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Abstract

We introduce the SAWScript language, aiming to provide a programmable interface to Galois’s
formal verification technologies, covering the Cryptol, Java, and LLVM languages. We use various simple
programs as examples, taken from the domain of cryptography. Our proofs use SAWScript to equivalence
check functions written in one language against their counterparts in another, or reference implementations
in one language against more efficient production implementations in the same language.
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Introduction
SAWScript is a special-purpose programming language developed by Galois to help orchestrate and track
the results of the large collection of proof tools necessary for analysis and verification of complex software
artifacts.

The language adopts the functional paradigm, and largely follows the structure of many other typed functional
languages, with some special features specifically targeted at the coordination of verification and analysis
tasks.

This tutorial introduces the details of the language by walking through several examples, and showing how
simple verification tasks can be described. Most of the examples make use of inline specifications written in
Cryptol, a language originally designed for high-level descriptions of cryptographic algorithms. For readers
unfamiliar with Cryptol, various documents describing its use are available here.

Example: Find First Set
As a first example, we consider equivalence checking different implementations of the POSIX ffs function,
which identifies the position of the first 1 bit in a word. The function takes an integer as input, treated as a
vector of bits, and returns another integer which indicates the index of the first bit set. This function can be
implemented in several ways with different performance and code clarity tradeoffs, and we would like to show
those different implementations are equivalent.

Reference Implementation

One simple implementation takes the form of a loop with an index initialized to zero, and a mask initialized
to have the least significant bit set. On each iteration, we increment the index, and shift the mask to the left.
Then we can use a bitwise “and” operation to test the bit at the index indicated by the index variable. The
following C code (which is also in the code/ffs.c file accompanying this tutorial) uses this approach.

uint32_t ffs_ref ( uint32_t word) {
int i = 0;
if (! word)

return 0;
for(int cnt = 0; cnt < 32; cnt ++)

if (((1 << i++) & word) != 0)
return i;

return 0; // notreached
}

This implementation is relatively straightforward, and a proficient C programmer would probably have little
difficulty believing its correctness. However, the number of branches taken during execution could be as many
as 32, depending on the input value. It’s possible to implement the same algorithm with significantly fewer
branches, and no backward branches.

Optimized Implementations

An alternative implementation, taken by the following program (also in code/ffs.c), treats the bits of the
input word in chunks, allowing sequences of zero bits to be skipped over more quickly.

uint32_t ffs_imp ( uint32_t i) {
char n = 1;
if (!(i & 0 xffff )) { n += 16; i >>= 16; }
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if (!(i & 0 x00ff )) { n += 8; i >>= 8; }
if (!(i & 0 x000f )) { n += 4; i >>= 4; }
if (!(i & 0 x0003 )) { n += 2; i >>= 2; }
return (i) ? (n+((i+1) & 0x01)) : 0;

}

Another optimized version, in the following rather mysterious program (also in code/ffs.c), based on the ffs
implementation in musl libc.

uint32_t ffs_musl ( uint32_t x)
{

static const char debruijn32 [32] = {
0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14

};
return x ? debruijn32 [(x&-x)*0 x076be629 >> 27]+1 : 0;

}

These optimized versions are much less obvious than the reference implementation. They might be faster,
but how do we gain confidence that they calculate the same results as the reference implementation?

SAWScript allows us to state these problems concisely, and to quickly and automatically prove the equivalence
of the reference and optimized implementations on all possible inputs.

Buggy Implementation

Finally, a buggy implementation which is correct on all but one possible input (also in code/ffs.c). Although
contrived, this program represents a case where traditional testing – as opposed to verification – is unlikely
to be helpful.

uint32_t ffs_bug ( uint32_t word) {
// injected bug :
if(word == 0 x101010 ) return 4; // instead of 5
return ffs_ref (word);

}

SAWScript allows us to quickly identify an input exhibiting the bug.

Generating LLVM Code

The SAWScript interpreter can analyze LLVM code, but most programs are originally written in a higher-level
language such as C, as in our example. Therefore, the C code must be translated to LLVM, using something
like the following command:

# clang -c -emit -llvm -o ffs.bc ffs.c

This command, and following command examples in this tutorial, can be run from the code directory
accompanying the tutorial document. A Makefile also exists in that directory, providing quick shortcuts for
tasks like this. For instance, we can get the same effect as the previous command by doing:

# make ffs.bc
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Equivalence Proof

We now show how to use SAWScript to prove the equivalence of the reference and implementation versions of
the FFS algorithm, and exhibit the bug in the buggy implementation.

A SAWScript program is typically structured as a sequence of commands, potentially along with definitions
of functions that abstract over commonly-used combinations of commands.

The following script (in code/ffs_llvm.saw) is sufficient to automatically prove the equivalence of ffs_ref with
ffs_imp and ffs_musl, and identify the bug in ffs_bug.

print " Extracting reference term: ffs_ref ";
l <- llvm_load_module "ffs.bc ";
ffs_ref <- llvm_extract l " ffs_ref " llvm_pure ;

print " Extracting implementation term: ffs_imp ";
ffs_imp <- llvm_extract l " ffs_imp " llvm_pure ;

print " Extracting implementation term: ffs_musl ";
ffs_musl <- llvm_extract l " ffs_musl " llvm_pure ;

print " Extracting buggy term: ffs_bug ";
ffs_bug <- llvm_extract l " ffs_bug " llvm_pure ;

print " Proving equivalence : ffs_ref == ffs_imp ";
let thm1 = {{ \x -> ffs_ref x == ffs_imp x }};
result <- prove abc thm1;
print result ;

print " Proving equivalence : ffs_ref == ffs_musl ";
let thm2 = {{ \x -> ffs_ref x == ffs_musl x }};
result <- prove abc thm2;
print result ;

print " Finding bug via sat search : ffs_ref != ffs_bug ";
let thm3 = {{ \x -> ffs_ref x != ffs_bug x }};
result <- sat abc thm3;
print result ;

print " Finding bug via failed proof : ffs_ref == ffs_bug ";
let thm4 = {{ \x -> ffs_ref x == ffs_bug x }};
result <- prove abc thm4;
print result ;

print "Done .";

In this script, the print commands simply display text for the user. The llvm_extract command instructs the
SAWScript interpreter to perform symbolic simulation of the given C function (e.g., ffs_ref) from a given
bitcode file (e.g., ffs.bc), and return a term representing the semantics of the function. The final argument,
llvm_pure indicates that the function to analyze is a “pure” function, which computes a scalar return value
entirely as a function of its scalar parameters.

The let statement then constructs a new term corresponding to the assertion of equality between two existing
terms. Arbitrary Cryptol expressions can be embedded within SAWScript; to distinguish Cryptol code from
SAWScript commands, the Cryptol code is placed within double brackets {{ and }}.
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The prove command can verify the validity of such an assertion. The abc parameter indicates what theorem
prover to use; SAWScript offers support for many other SAT and SMT solvers as well as user definable
simplification tactics.

If the saw executable is in your PATH, you can run the script above with
# saw ffs_llvm .saw

producing the output
Loading module Cryptol
Loading file " ffs_llvm .saw"
Extracting reference term: ffs_ref
Extracting implementation term: ffs_imp
Extracting implementation term: ffs_musl
Extracting buggy term: ffs_bug
Proving equivalence : ffs_ref == ffs_imp
Valid
Proving equivalence : ffs_ref == ffs_musl
Valid
Finding bug via sat search : ffs_ref != ffs_bug
Sat: [x = 1052688]
Finding bug via failed proof : ffs_ref == ffs_bug
Invalid : [x = 1052688]
Done.

Note that 0x101010 = 1052688, and so both explicitly searching for an input exhibiting the bug (with sat) and
attempting to prove the false equivalence (with prove) exhibit the bug. Symmetrically, we could use sat to
prove the equivalence of ffs_ref and ffs_imp, by checking that the corresponding disequality is unsatisfiable.
Indeed, this exactly what happens behind the scenes: prove abc <goal> is essentially not (sat abc (not <goal>)).

Cross-Language Proofs

We can implement the FFS algorithm in Java with code almost identical to the C version.

The reference version (in code/FFS.java) uses a loop, like the C version:
static int ffs_ref (int word) {

int i = 0;
if(word == 0)

return 0;
for(int cnt = 0; cnt < 32; cnt ++)

if (((1 << i++) & word) != 0)
return i;

return 0;
}

And the efficient implementation uses a fixed sequence of masking and shifting operations:
static int ffs_imp (int i) {

byte n = 1;
if ((i & 0 xffff ) == 0) { n += 16; i >>= 16; }
if ((i & 0 x00ff ) == 0) { n += 8; i >>= 8; }
if ((i & 0 x000f ) == 0) { n += 4; i >>= 4; }
if ((i & 0 x0003 ) == 0) { n += 2; i >>= 2; }
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if (i != 0) { return (n+((i+1) & 0x01)); } else { return 0; }
}

Although in this case we can look at the C and Java code and see that they perform almost identical
operations, the low-level operators available in C and Java do differ somewhat. Therefore, it would be nice to
be able to gain confidence that they do, indeed, perform the same operation.

We can do this with a process very similar to that used to compare the reference and implementation versions
of the algorithm in a single language.

First, we compile the Java code to a JVM class file.
# javac -g FFS.java

Now we can do the proof both within and across languages (from code/ffs_compare.saw):
import "ffs.cry ";
j <- java_load_class "FFS ";
java_ffs_ref <- java_extract j " ffs_ref " java_pure ;
java_ffs_imp <- java_extract j " ffs_imp " java_pure ;

l <- llvm_load_module "ffs.bc ";
c_ffs_ref <- llvm_extract l " ffs_ref " llvm_pure ;
c_ffs_imp <- llvm_extract l " ffs_imp " llvm_pure ;

print "java ref <-> java imp ";
let thm1 = {{ \x -> java_ffs_ref x == java_ffs_imp x }};
prove_print abc thm1;

print "c ref <-> c imp ";
let thm2 = {{ \x -> c_ffs_ref x == c_ffs_imp x }};
prove_print abc thm2;

print "java imp <-> c imp ";
let thm3 = {{ \x -> java_ffs_imp x == c_ffs_imp x }};
prove_print abc thm3;

print " cryptol imp <-> c imp ";
let thm4 = {{ \x -> ffs_imp x == c_ffs_imp x }};
prove_print abc thm4;

print " cryptol imp <-> cryptol ref ";
let thm5 = {{ \x -> ffs_imp x == ffs_ref x }};
prove_print abc thm5;

print "Done .";

We can run this with the -j flag to tell it where to find the Java standard libraries:
# saw -j <path to rt.jar or classes .jar from JDK > ffs_compare .saw

If you’re using a Sun Java, you can find the standard libraries JAR by grepping the output of java -v:
# java -v 2 >&1 | grep Opened
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Using SMT-Lib Solvers
The examples presented so far have used the internal proof system provided by SAWScript, based primarily
on a version of the ABC tool from UC Berkeley linked into the saw executable. However, there is internal
support for other proof tools – such as Yices and CVC4 as illustrated in the next example – and more general
support for exporting models representing theorems as goals in the SMT-Lib language. These exported goals
can then be solved using an external SMT solver.

Consider the following C file:

int double_ref (int x) {
return x * 2;

}

int double_imp (int x) {
return x << 1;

}

In this trivial example, an integer can be doubled either using multiplication or shifting. The following
SAWScript program (code/double.saw) verifies that the two are equivalent using both internal ABC, Yices,
and CVC4 modes, and by exporting an SMT-Lib theorem to be checked later, by an external SAT solver.

l <- llvm_load_module " double .bc ";
double_imp <- llvm_extract l " double_imp " llvm_pure ;
double_ref <- llvm_extract l " double_ref " llvm_pure ;
let thm = {{ \x -> double_ref x == double_imp x }};

r <- prove abc thm;
print r;

r <- prove yices thm;
print r;

r <- prove cvc4 thm;
print r;

let thm_neg = {{ \x -> ~( thm x) }};
write_smtlib2 " double .smt2" thm_neg ;

print "Done .";

The new primitives introduced here are the tilde operator, ~, which constructs the logical negation of a term,
and write_smtlib2, which writes a term as a proof obligation in SMT-Lib version 2 format. Because SMT
solvers are satisfiability solvers, their default behavior is to treat free variables as existentially quantified.
By negating the input term, we can instead treat the free variables as universally quantified: a result of
“unsatisfiable” from the solver indicates that the original term (before negation) is a valid theorem. The prove
primitive does this automatically, but for flexibility the write_smtlib2 primitive passes the given term through
unchanged, because it might be used for either satisfiability or validity checking.

The SMT-Lib export capabilities in SAWScript make use of the Haskell SBV package, and support ABC,
Boolector, CVC4, MathSAT, Yices, and Z3.
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External SAT Solvers
In addition to the abc, cvc4, and yices proof tactics used above, SAWScript can also invoke arbitrary external
SAT solvers that read CNF files and produce results according to the SAT competition input and output
conventions, using the external_cnf_solver tactic. For example, you can use PicoSAT to prove the theorem
thm from the last example, with the following commands:

let picosat = external_cnf_solver " picosat " ["%f"];
prove_print picosat thm;

The use of let is simply a convenient abbreviation. The following would be equivalent:
prove_print ( external_cnf_solver " picosat " ["%f"]) thm;

The first argument to external_cnf_solver is the name of the executable. It can be a fully-qualified name, or
simply the bare executable name if it’s in your PATH. The second argument is an array of command-line
arguments to the solver. Any occurrence of %f is replaced with the name of the temporary file containing the
CNF representation of the term you’re proving.

The external_cnf_solver tactic is based on the same underlying infrastructure as the abc tactic, and is generally
capable of proving the same variety of theorems.

To write a CNF file without immediately invoking a solver, use the offline_cnf tactic, or the write_cnf top-level
command.

Compositional Proofs
The examples shown so far treat programs as monolithic entities. A Java method or C function, along
with all of its callees, is translated into a single mathematical model. SAWScript also has support for more
compositional proofs, as well as proofs about functions that use heap data structures.

Compositional Imperative Proofs

As a simple example of compositional reasoning on imperative programs, consider the following Java code.
class Add {

public int add(int x, int y) {
return x + y;

}

public int dbl(int x) {
return add(x, x);

}
}

Here, the add function computes the sum of its arguments. The dbl function then calls add to double its
argument. While it would be easy to prove that dbl doubles its argument by following the call to add, it’s also
possible in SAWScript to prove something about add first, and then use the results of that proof in the proof
of dbl, as in the following SAWScript code (code/java_add.saw).

let add_spec : JavaSetup () = do {
x <- java_var "x" java_int ;
y <- java_var "y" java_int ;
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java_return {{ x + y }};
java_verify_tactic abc;

};

let dbl_spec : JavaSetup () = do {
x <- java_var "x" java_int ;
java_return {{ x + x }};
java_verify_tactic abc;

};

cls <- java_load_class "Add ";
ms <- java_verify cls "add" [] add_spec ;
ms ' <- java_verify cls "dbl" [ms] dbl_spec ;
print "Done .";

This can be run as follows:

# saw -j <path to rt.jar or classes .jar from JDK > java_add .saw

In this example, the definitions of add_spec and dbl_spec provide extra information about how to configure the
symbolic simulator when analyzing Java code. In this case, the setup blocks provide explicit descriptions of
the implicit configuration used by java_extract (used in the earlier Java FFS example and in the next section).
The java_var commands instruct the simulator to create fresh symbolic inputs to correspond to the Java
variables x and y. Then, the java_return commands indicate the expected return value of the each method, in
terms of existing models (which can be written inline).

Finally, the java_verify_tactic command indicates what method to use to prove that the Java methods do
indeed return the expected value. In this case, we use ABC.

To make use of these setup blocks, the java_verify command analyzes the method corresponding to the class
and method name provided, using the setup block passed in as a parameter. It then returns an object that
describes the proof it has just performed. This object can be passed into later instances of java_verify to
indicate that calls to the analyzed method do not need to be followed, and the previous proof about that
method can be used instead of re-analyzing it.

Interactive Interpreter
The examples so far have used SAWScript in batch mode on complete script files. It also has an interactive
Read-Eval-Print Loop (REPL) which can be convenient for experimentation. To start the REPL, run
SAWScript with no arguments:

# saw

The REPL can evaluate any command that would appear at the top level of a standalone script, or in the
main function, as well as a few special commands that start with a colon:

:env display the current sawscript environment
:type check the type of an expression
: browse display the current environment
:eval evaluate an expression and print the result
:? display a brief description about a built -in operator
:help display a brief description about a built -in operator
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:quit exit the REPL
:load load a module
:add load an additional module
:cd set the current working directory

As an example of the sort of interactive use that the REPL allows, consider the file code/NQueens.cry, which
provides a Cryptol specification of the problem of placing a specific number of queens on a chess board in
such a way that none of them threaten any of the others.

all : {n, a} (fin n) => (a -> Bit , [n]a) -> Bit
all (f, xs) = [ f x | x <- xs ] == ~zero

contains xs e = [ x == e | x <- xs ] != zero

distinct : {n,a} (fin n, Cmp a) => [n]a -> Bit
distinct xs =

[ if n1 < n2 then x != y else True
| (x,n1) <- numXs , (y,n2) <- numXs
] == ~zero

where
numXs = [ (x,n) | x <- xs | n <- [ (0:[ width n]) ... ] ]

type Position n = [ width (n - 1)]

type Board n = [n]( Position n)

type Solution n = Board n -> Bit

checkDiag : {n} (fin n, n >= 1) => Board n -> ( Position n, Position n) -> Bit
checkDiag qs (i, j) = (i >= j) || ( diffR != diffC )

where qi = qs @ i
qj = qs @ j
diffR = if qi >= qj then qi -qj else qj -qi
diffC = j - i // we know i < j

nQueens : {n} (fin n, n >= 1) => Solution n
nQueens qs = all ( inRange qs , qs) && all ( checkDiag qs , ijs `{n}) && distinct qs

ijs : {n}( fin n, n >= 1)=> [_]( Position n, Position n)
ijs = [ (i, j) | i <- [0 .. (n -1)], j <- [0 .. (n -1) ]]

inRange : {n} (fin n, n >= 1) => Board n -> Position n -> Bit
inRange qs x = x <= `(n - 1)

property nQueensProve x = ( nQueens x) == False

This example gives us the opportunity to use the satisfiability checking capabilities of SAWScript on a
problem other than equivalence verification.

First, we can load a model of the nQueens term from the Cryptol file.

# saw
___ __ _ _ _ _

/ __ |/ _' | | | |
\__ \ (_| | | | |
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|___ /\__ ,_|\_,_/

sawscript > m <- cryptol_load " NQueens .cry"
Loading module Cryptol
Loading module Main
sawscript > let nq8 = {{ m:: nQueens `{8} }}

Once we’ve extracted this model, we can try it on a specific configuration to see if it satisfies the property
that none of the queens threaten any of the others.

sawscript > print {{ nq8 [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7] }}
False

This particular configuration didn’t work, but we can use the satisfiability checking tools to automatically
find one that does.

sawscript > sat_print abc nq8
Sat [3 ,1 ,6 ,2 ,5 ,7 ,4 ,0]

And, finally, we can double-check that this is indeed a valid solution.

sawscript > print {{ nq8 [3 ,1 ,6 ,2 ,5 ,7 ,4 ,0] }}
True

More Sophisticated Imperative Models
The analysis of JVM and LLVM programs presented so far have been relatively simple and automated. The
java_extract and llvm_extract commands can extract models from simple methods or functions with minimal
effort. For more complex code, however, more flexibility is necessary.

The java_symexec and llvm_symexec commands provide greater control over the use of symbolic execution to
generate models of JVM and LLVM programs. These two commands have similar structure, but slight
differences due to the differences between the underlying languages.

The shared structure is intuitively the following: both commands take parameters that set up the initial
symbolic state of the program, before execution begins, and parameters that indicate which portions of the
program state should be returned as output when execution completes.

The initial state before symbolic execution typically includes unknown (symbolic) elements. To construct
Term inputs that contain symbolic variables, you can start by using the fresh_symbolic command, which takes
a name and a type as arguments, and returns a Term. A type can be written using Cryptol type syntax by
enclosing it within {| |}. The name is used only for pretty-printing, and the type is used for later consistency
checking. For example, consider the following command:

x <- fresh_symbolic "x" {| [32] |};

This creates a new Term stored in the SAWScript variable x that is a 32-bit symbolic word.

These symbolic variables are most commonly used by the more general Java and LLVM model extraction
commands. The Java version of the command has the following signature:
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java_symexec : JavaClass // Java class object
-> String // Java method name
-> [( String , Term)] // Initial state elements
-> [ String ] // Final ( output ) state elements
-> Bool // Check satisfiability of branches ?
-> TopLevel Term // Resulting Term

This first two parameters are the same as for java_extract: the class object and the name of the method from
that class to execute. The third parameter describes the initial state of execution. For each element of this
list, SAWScript writes the value of the Term to the destination variable or field named by the String. Typically,
the Term will either be directly the result of fresh_symbolic or an more complex expression containing such
a result, though it is allowed to be a constant value. The syntax of destination follows Java syntax. For
example, o.f describes field f of object o. The fourth parameter indicates which elements of the final state to
return as output. The syntax of the strings in this list is the same as for the initial state description. The
final parameter indicates whether to perform satisfiability checks on branch conditions. If this is true, SAW
will use its internal version of ABC to check the satisfiability of each branch condition before executing the
associated branch. If this is false, SAW will simply check whether the branch condition has a constant value.

An example of using java_symexec on a simple function (using just scalar arguments and return values) appears
in the code/java_symexec.saw file, quoted below.

cadd <- java_load_class "Add ";
add <- define "add" {{ \x y -> (x : [32]) + y }};
x <- fresh_symbolic "x" {| [32] |};
y <- fresh_symbolic "y" {| [32] |};
t <- java_symexec cadd "add" [("x", x), ("y", y)] [" return "] true;
print_term t;
t' <- abstract_symbolic t;
prove_print abc {{ \a b -> t' a b == add a b }};
print "Done .";

This script uses fresh_symbolic to construct two fresh variables, x and y, and then passes them in as the initial
values of the method parameters of the same name. It then uses the special name return to refer to the
return value of the method in the output list. Finally, it uses the abstract_symbolic command to convert a
Term containing symbolic variables into a function that takes the values of those variables as parameters. This
last step exists partly to illustrate the use of abstract_symbolic, and partly because the prove_print command
currently cannot process terms that contain symbolic variables (though we plan to adapt it to be able to in
the near future).

The LLVM version of the command has some additional complexities, due to the less structured nature of
the LLVM memory model.

llvm_symexec : LLVMModule // LLVM module object
-> String // Function name
-> [( String , Int)] // Initial allocations
-> [( String , Term , Int)] // Initial state element
-> [( String , Int)] // Final state elements
-> Bool // Enable branch SAT checking
-> TopLevel Term // Resulting Term

© 2015 Galois, Inc. Page 13



SAWScript

The first two and last arguments of llvm_extract are symmetric with java_extract, specifying a module, function,
and whether to SAT-check branch conditions. However, while java_extract takes two input/output arguments,
corresponding to initial values and results, llvm_extract takes three input/output arguments, corresponding to
memory allocations, initial values, and results. Below, we first give an llvm_extract example for add, which is
close to the corresponding java_extract example above, but does not make use of the unfamiliar initialization
argument. We then give a second llvm_extract example for dotprod, which does use the initialization argument.

In more detail, the input/output arguments of llvm_symexec are interpreted as follows. For the first list,
SAWScript will initialize the pointer named by the given string to point to the number of elements indicated
by the Int. For the second list, SAWScript will write to the given location with the given number of elements
read from the given term. The name given in the initial assignment list should be written as an r-value,
so if "p" appears in the allocation list then "*p" should appear in the initial assignment list. The third list
describes the results, using the same convention: read n elements from the named location.

The numbers given for a particular location in the three lists need not be the same. For instance, we might
allocate 10 elements for pointer p, write 8 elements to *p at the beginning, and read 4 elements from *p at the
end. However, both the initialization and result sizes must be less than or equal to the allocation size.

An example of using llvm_symexec on a function similar to the Java method just discussed appears in the
code/llvm_symexec.saw file, quoted below.

m <- llvm_load_module " basic .bc ";
add <- define "add" {{ \x y -> (x : [32]) + y }};
x <- fresh_symbolic "x" {| [32] |};
y <- fresh_symbolic "y" {| [32] |};
t <- llvm_symexec m "add" [] [("x", x, 1) , ("y", y, 1)] [(" return ", 1)] false ;
print_term t;
t' <- abstract_symbolic t;
prove_print abc {{ \a b -> t' a b == add a b }};
print "Done .";

This has largely the same structure as the Java example, except that the llvm_symexec command takes an
extra argument, describing allocations (here the empty list []), and the input and output descriptions take
sizes as well as values, to compensate for the fact that LLVM does not track how much memory a given
variable takes up. In simple scalar cases such as this one, the size argument will always be 1. However, if
an input or output parameter is an array, it will take on the corresponding size value. For instance, say an
LLVM function takes as a parameter an array a containing 10 elements of type uint32_t *, which it reads
and writes. We could then call llvm_symexec with an allocation argument of [("a", 10)], and both input and
output arguments of [("*a", 10)] (note the additional * in the latter).

Concretely, consider a function to calculate the dot product of two vectors. We can define this operation
functionally in Cryptol as follows (and as in code/dotprod.cry).

zip : {n, a} (fin n, Arith a) => (a -> a -> a) -> [n]a -> [n]a -> [n]a
zip f xs ys = [ f x y | x <- xs | y <- ys ]

sum : {n, a} (fin n, fin a) => [n][a] -> [a]
sum xs = ys !0

where ys = [0] # [ x + y | x <- xs | y <- ys ]

dotprod : {n, a} (fin n, fin a) => [n][a] -> [n][a] -> [a]
dotprod xs ys = sum (zip (*) xs ys)
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This code uses a very functional style, and declares several generic, polymorphic functions. A more specialized
implementation of dot product in C might look more like the following, from code/dotprod.c.

# include <stdint .h>
# include <stdlib .h>

uint32_t dotprod ( uint32_t *x, uint32_t *y, uint32_t size) {
uint32_t res = 0;
for( size_t i = 0; i < size; i++) {

res += x[i] * y[i];
}
return res;

}

Here, we have two arrays of 32-bit integers, which we assume to both contain size elements. We can prove
the equivalence between the C and Cryptol dot product functions with the following SAWScript program (in
code/dotprod.saw).

import " dotprod .cry ";
m <- llvm_load_module " dotprod .bc ";
xs <- fresh_symbolic "xs" {| [12][32] |};
ys <- fresh_symbolic "ys" {| [12][32] |};
let allocs = [ ("x", 12) , ("y", 12) ];
let inputs = [ ("*x", xs , 12)

, ("*y", ys , 12)
, (" size", {{ 12:[32] }}, 1)
];

let outputs = [(" return ", 1) ];
t <- llvm_symexec m " dotprod " allocs inputs outputs true;
thm1 <- abstract_symbolic {{ t == dotprod xs ys }};
prove_print abc thm1;

The structure of this script is similar to the previous example, but has some additional complexities. First,
we pass in an allocation list that declares that x and y each point to 12 elements of their respective types
(both uint32_t in this case). Next, we state that the values pointed to by x and y are the (symbolic) values of
xs and ys respectively, each of which consists of 12 elements. Finally, the size parameter is the constant 12.
Because the type of t is fixed after the llvm_symexec command has run, the Cryptol type checker can specialize
the dotprod function to the appropriate type. ABC can then easily prove the equivalence between the C and
Cryptol implementations.

Using Additional Cryptol Primitives
SAWScript defines some Cryptol primitives that are not in scope by default, including signed comparisons
(Cryptol’s comparisons are unsigned). Here is an example including the available operators and their use:

sawscript > let m = cryptol_prims ()
sawscript > print m
Symbols
=======

trunc : {m, n} (fin m, fin n) => [m + n] -> [n]
uext : {m, n} (fin m, fin n) => [n] -> [m + n]
sgt : {n} (fin n) => [n] -> [n] -> Bit
sge : {n} (fin n) => [n] -> [n] -> Bit
slt : {n} (fin n) => [n] -> [n] -> Bit
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sle : {n} (fin n) => [n] -> [n] -> Bit

sawscript > print {{ m:: sle 0xf 0x5 }}
True

Note that m::sle (signed less-than-or-equal) is used in the Cryptol brackets. The m:: is a module qualification.

Other Examples
The code directory contains a few additional examples not mentioned so far. These remaining examples don’t
cover significant new material, but help fill in some extra use cases that are similar, but not identical to those
already covered.

Java Equivalence Checking

The previous examples showed comparison between two different LLVM implementations, and cross-language
comparisons between Cryptol, Java, and LLVM. The script in code/ffs_java.saw compares two different Java
implementations, instead.

print " Extracting reference term ";
j <- java_load_class "FFS ";
ffs_ref <- java_extract j " ffs_ref " java_pure ;

print " Extracting implementation term ";
ffs_imp <- java_extract j " ffs_imp " java_pure ;

print " Proving equivalence ";
let thm1 = {{ \x -> ffs_ref x == ffs_imp x }};
prove_print abc thm1;
print "Done .";

As with previous Java examples, this one needs to be run with the -j flag to tell the interpreter where to find
the Java standard libraries.

# saw -j <path to rt.jar or classes .jar from JDK > ffs_java .saw

AIG Export and Import

Most of the previous examples have used the abc tactic to discharge theorems. This tactic works by translating
the given term to And-Inverter Graph (AIG) format, transforming the graph in various ways, and then using
a SAT solver to complete the proof.

Alternatively, the write_aig command can be used to write an AIG directly to a file, in AIGER format, for
later processing by external tools, as shown in code/ffs_gen_aig.saw.

cls <- java_load_class "FFS ";
bc <- llvm_load_module "ffs.bc ";
java_ffs_ref <- java_extract cls " ffs_ref " java_pure ;
java_ffs_imp <- java_extract cls " ffs_imp " java_pure ;
c_ffs_ref <- llvm_extract bc " ffs_ref " llvm_pure ;
c_ffs_imp <- llvm_extract bc " ffs_imp " llvm_pure ;
write_aig " java_ffs_ref .aig" java_ffs_ref ;
write_aig " java_ffs_imp .aig" java_ffs_imp ;
write_aig " c_ffs_ref .aig" c_ffs_ref ;
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write_aig " c_ffs_imp .aig" c_ffs_imp ;
print "Done .";

Conversely, the read_aig command can construct an internal term from an existing AIG file, as shown in
code/ffs_compare_aig.saw.

java_ffs_ref <- read_aig " java_ffs_ref .aig ";
java_ffs_imp <- read_aig " java_ffs_imp .aig ";
c_ffs_ref <- read_aig " c_ffs_ref .aig ";
c_ffs_imp <- read_aig " c_ffs_imp .aig ";

let thm1 = {{ \x -> java_ffs_ref x == java_ffs_imp x }};
prove_print abc thm1;

let thm2 = {{ \x -> c_ffs_ref x == c_ffs_imp x }};
prove_print abc thm2;

print "Done .";

We can use external AIGs to verify the equivalence as follows, generating the AIGs with the first script and
comparing them with the second:

# saw -j <path to rt.jar or classes .jar from JDK > ffs_gen_aig .saw
# saw ffs_compare_aig .saw

Files in AIGER format can be produced and processed by several external tools, including ABC, Cryptol
version 1, and various hardware synthesis and verification systems.
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