galois

Using the Software Analysis Workbench (SAW)

Galois, Inc.
421 SW 6th Ave., Ste. 300
Portland, OR 97204

Overview

The Software Analysis Workbench (SAW) is a tool for constructing mathematical models of the computational
behavior of software, transforming these models, and proving properties about them.

SAW can currently construct models of a subset of programs written in Cryptol, LLVM (and therefore C), and
JVM (and therefore Java). The models take the form of typed functional programs, so in a sense SAW can
be considered a translator from imperative programs to their functional equivalents. Various external proof
tools, including a variety of SAT and SMT solvers, can be used to prove properties about SAW functional
models. Models can be constructed from arbitrary Cryptol programs, and can typically be constructed from
C and Java programs that have fixed-size inputs and outputs and that terminate after a fixed number of
iterations of any loop (or a fixed number of recursive calls). One common use case is to verify that an
algorithm specification in Cryptol is equivalent to an algorithm implementation in C or Java.

The process of extracting models from programs, manipulating them, forming queries about them, and sending
them to external provers is orchestrated using a special purpose language called SAWScript. SAWScript is a
typed functional language with support for sequencing of imperative commmands.

The rest of this document first describes how to use the SAW tool, saw, and outlines the structure of
the SAWScript language and its relationship to Cryptol. It then presents the SAWScript commands that
transform functional models and prove properties about them. Finally, it describes the specific commands
available for constructing models from imperative programs in a variety of languages.

Invoking SAW

The primary mechanism for interacting with SAW is through the saw executable included as part of the
standard binary distribution. With no arguments, saw starts a read-evaluate-print loop (REPL) that allows
the user to interactively evaluate commands in the SAWScript language. With one file name argument, it
executes the specified file as a SAWScript program.

In addition to a file name, the saw executable accepts several command-line options:

-h, -7, --help Print a help message.

-V, --version Show the version of the SAWScript interpreter.

-c path, --classpath=path Specify a colon-delimited list of paths to search for Java classes.

-i path, --import-path=path Specify a colon-delimited list of paths to search for imports.

-t, --extra-type-checking Perform extra type checking of intermediate values.

-I, --interactive Run interactively (with a REPL).

-j path, --jars=path Specify a colon-delimited list of paths to . jar files to search for Java classes.
-d num, --sim-verbose=num Set the verbosity level of the Java and LLVM simulators.

-v num, --verbose=num Set the verbosity level of the SAWScript interpreter.

SAW also uses several environment variables for configuration:

g d l 015 Using the Software Analysis Workbench (SAW)

CRYPTOLPATH Specify a colon-delimited list of directory paths to search for Cryptol imports (including the
Cryptol prelude).

SAW_IMPORT_PATH Specify a colon-delimited list of directory paths to search for imports.
SAW_JDK_JAR Specify the path of the . jar file containing the core Java libraries.

On Windows, semicolon-delimited lists are used instead of colon-delimited lists.

Structure of SAWScript

A SAWScript program consists, at the top level, of a sequence of commands to be executed in order. Each
command is terminated with a semicolon. For example, the print command displays a textual representation
of its argument. Suppose the following text is stored in the file print.saw:

print 3;

The command saw print.saw will then yield output similar to the following;:
Loading module Cryptol
Loading file "print.saw"
3
The same code can be run from the interactive REPL:
sawscript> print 3;
3
At the REPL, terminating semicolons can be omitted:
sawscript> print 3
3
To make common use cases simpler, bare values at the REPL are treated as if they were arguments to print:
sawscript> 3
3
One SAWScript file can be included in another using the include command, which takes the name of the file
to be included as an argument. For example:

include "print.saw";

Syntax

The syntax of SAWScript is reminiscent of functional languages such as Cryptol, Haskell and ML. In particular,
functions are applied by writing them next to their arguments rather than by using parentheses and commas.
Rather than writing £(x, y), write £ x y.

In SAWScript, all text from // until the end of a line is ignored. Additionally, all text between /* and */ is
ignored, regardless of whether the line ends.

Basic Types and Values

All values in SAWScript have types, and these types are determined and checked before a program runs (that
is, SAWScript is statically typed). The basic types available are similar to those in many other languages.

e The Int type represents unbounded mathematical integers. Integer constants can be written in decimal
notation (e.g., 42), hexadecimal notation (0x2a), and binary (0b00101010). However, unlike many
languages, integers in SAWScript are used primarily as constants. Arithmetic is usually encoded in
Cryptol, as discussed in the next section.

g d l 015 Using the Software Analysis Workbench (SAW)

e The Boolean type, Bool, contains the values true and false, like in many other languages. As with
integers, computations on Boolean values usually occur in Cryptol.

e Values of any type can be aggregated into tuples. For example, the value (true, 10) has the type
(Bool, Int).

e Values of any type can also be aggregated into records, which are exactly like tuples except that their
components have names. For example, the value { b = true, n = 10 } has the type { b : Bool, n
: Int }.

e A sequence of values of the same type can be stored in a list. For example, the value [true, false,
true] has the type [Bool].

» Strings of textual characters can be represented in the String type. For example, the value "example"
has type String.

e The “unit” type, written (), is essentially a placeholder. It has only one value, also written (). Values
of type () convey no information. We will show in later sections several cases where this is useful.

SAWScript also includes some more specialized types that do not have straightforward counterparts in most
other languages. These will appear in later sections.

Basic Expression Forms

One of the key forms of top-level command in SAWScript is a binding, introduced with the let keyword,
which gives a name to a value. For example:

sawscript> let x = 5
sawscript> x
5

Bindings can have parameters, in which case they define functions. For instance, the following function takes
one parameter and constructs a list containing that parameter as its single element.

sawscript> let f x = [x]
sawscript> f "text"
["text"]

Functions themselves are values and have types. The type of a function that takes an argument of type a
and returns a result of type b is a -> b.

Function types are typically inferred, as in the example £ above. In this case, because f only creates a list
with the given argument, and because it is possible to create a list of any element type, £ can be applied to
an argument of any type. We say, therefore, that £ is polymorphic. Concretely, we write the type of £ as
{a} a -> [a], meaning it takes a value of any type (denoted a) and returns a list containing elements of
that same type. This means we can also apply £ to 10:

sawscript> £ 10
[10]
However, we may want to specify that a function has a more specific type. In this case, we could restrict £ to

operate only on Int parameters.

sawscript> let f (x : Int) = [x]

This will work identically to the original £ on an Int parameter:

sawscript> f 10
[10]

g d l 015 Using the Software Analysis Workbench (SAW)

However, it will fail for a String parameter:

sawscript> f "text"

type mismatch: String -> t.0 and Int -> [Int]
at "_" (REPL)
mismatched type constructors: String and Int

Type annotations can be applied to any expression. The notation (e : t) indicates that expression e is
expected to have type t and that it is an error for e to have a different type. Most types in SAWScript are
inferred automatically, but specifying them explicitly can sometimes enhance readability.

Because functions are values, functions can return other functions. We make use of this feature when writing
functions of multiple arguments. Consider the function g, similar to £ but with two arguments:

sawscript> let g x y = [x, y]

Like £, g is polymorphic. Its type is {a} a -> a -> [a]. This means it takes an argument of type a and
returns a function that takes an argument of the same type a and returns a list of a values. We can therefore
apply g to any two arguments of the same type:

sawscript> g 2 3

[2,3]

sawscript> g true false
[true,false]

But type checking will fail if we apply it to two values of different types:

sawscript> g 2 false

type mismatch: Bool -> t.0 and Int -> [Int]
at "_" (REPL)
mismatched type constructors: Bool and Int

So far we have used two related terms, function and command, and we take these to mean slightly different
things. A function is any value with a function type (e.g., Int -> [Int]). A command is a function where
the result type is one of a specific set of special types. These special types are parameterized (like the list
type), and allow us to restrict command usage to specific contexts.

The most important command type is the TopLevel type, indicating a command that can run at the top level
(directly at the REPL, or as one of the top level commands in a script file). The print command has the
type {a} a -> TopLevel (), where TopLevel () means that it is a command that runs in the TopLevel
context and returns a value of type () (that is, no useful information). In other words, it has a side effect
(printing some text to the screen) but doesn’t produce any information to use in the rest of the SAWScript
program. This is the primary usage of the () type.

It can sometimes be useful to bind a sequence of commands together in a unit. This can be accomplished
with the do { ... } construct. For example:
sawscript> let print_two = do { print "first"; print "second"; }
sawscript> print_two
first
second

The bound value, print_two, has type TopLevel (), since that is the type of its last command.

Note that in the previous example the printing doesn’t occur until print_two directly appears at the REPL.
The let expression does not cause those commands to run. The construct that runs a command is written

g d l 015 Using the Software Analysis Workbench (SAW)

using the <- operator. This operator works like let except that it says to run the command listed on the
right hand side and bind the result, rather than binding the variable to the command itself. Using <- instead
of 1let in the previous example yields:

sawscript> print_two <- do { print "first"; print "second"; }
first

second

sawscript> print_two

O

Here, the print commands run first, and then print_two gets the value returned by the second print
command, namely (). Any command listed alone at the REPL, the top level in a script, or inside a do block
is treated as implicitly having a <- that binds its result to an unnamed variable (that is, discards it).

In some cases it can be useful to have more control over the value returned by a do block. The return
command allows us to do this. For example, say we wanted to write a function that would print a message
before and after running some arbitrary command and then return the result of that command. We could
write:

let run_with_message c =
do {
print "Starting.";
res <- c;
print "Done.";
return res;

};

X <- run_with_message (return 3);
print x;
If we put this script in run.saw and run it with saw, we get something like:

Loading module Cryptol
Loading file "run.saw"
Starting.

Done.

3

Note that it ran the first print command, then the caller-specified command, then the second print command.
The result stored in x at the end is the result of the return command passed in as an argument.

Other Basic Functions

Aside from the functions we have listed so far, there are a number of other operations for working with basic
data structures and interacting with the operating system.

The following functions work on lists:

concat : {a} [al] -> [a] -> [a]
head : {a} [a]l -> a
tail : {al} [al] -> [a]

length : {a} [a] -> Int

g d l 015 Using the Software Analysis Workbench (SAW)

null : {a} [a]l] -> Bool
nth : {a} [a]l] -> Int -> a

for : {m, a, b} [al] -> (a -> m b) -> m [b]

The concat function takes two lists and returns the concatenation of the two. The head function returns
the first element of a list, and the tail function returns everything except the first element. The length
function counts the number of elements in a list, and the null function indicates whether a list is empty (has
zero elements). The nth function returns the element at the given position, with nth 1 0 being equivalent
to head 1. The for command takes a list and a function that runs in some command context. The passed
command will be called once for every element of the list, in order, and for will ultimately return a list of all
of the results produced by the command.

For interacting with the operating system, we have:

get_opt : Int -> String
exec : String -> [String] -> String -> ToplLevel String

exit : Int -> Toplevel ()

The get_opt function returns the command-line argument to saw at the given index. Argument 0 is always
the name of the saw executable itself, and higher indices represent later arguments. The exec command runs
an external program given, respectively, an executable name, a list of arguments, and a string to send to
the standard input of the program. The exec command returns the standard output from the program it
executes and prints standard error to the screen. Finally, the exit command stops execution of the current
script and returns the given exit code to the operating system.

Finally, there are a few miscellaneous functions and commands. The show function computes the textual
representation of its argument in the same way as print, but instead of displaying the value it returns it as a
String value for later use in the program. This can be useful for constructing more detailed messages later.
The str_concat function, which concatenates two String values, can also be useful in this case.

The time command runs any other TopLevel command and prints out the time it took to execute. If you
want to use the time value later in the program, the with_time function returns both the original result of
the timed command and the time taken to execute it (in milliseconds), without printing anything in the
process.

show : {a} a -> String

str_concat : String -> String -> String

time : {a} TopLevel a -> TopLevel a

with_time : {a} TopLevel a -> TopLevel (Int, a)

The Term Type

Perhaps the most important type in SAWScript, and the one most unlike the built-in types of most other
languages, is the Term type. Essentially, a value of type Term precisely describes all possible computations
performed by some program. In particular, if two Term values are equivalent, then the programs that they
represent will always compute the same results given the same inputs. We will say more later about exactly
what it means for two terms to be equivalent, and how to determine whether two terms are equivalent.

Before exploring the Term type more deeply, it is important to understand the role of the Cryptol language

g d l 015 Using the Software Analysis Workbench (SAW)

in SAW.
Cryptol and its Role in SAW

Cyptol is a domain-specific language originally designed for the high-level specification of cryptographic
algorithms. It is general enough, however, to describe a wide variety of programs, and is particularly applicable
to describing computations that operate on streams of data of some fixed size.

In addition to being integrated into SAW, Cryptol is a standalone language with its own manual:

http://cryptol.net/files/ProgrammingCryptol.pdf

SAW includes deep support for Cryptol, and in fact requires the use of Cryptol for most non-trivial tasks.
To fully understand the rest of this manual and to effectively use SAW, you will need to develop at least a
rudimentary understanding of Cryptol.

The primary use of Cryptol within SAWScript is to construct values of type Term. Although Term values can
be constructed from various sources, inline Cryptol expressions are the most direct and convenient way to
create them.

Specifically, a Cryptol expression can be placed inside double curly braces ({{ and }}), resulting in a value of
type Term. As a very simple example, there is no built-in integer addition operation in SAWScript. However,
we can use Cryptol’s built-in integer addition operator within SAWScript as follows:

sawscript> let t = {{ 0x22 + 0x33 }}
sawscript> print t
85

Although it printed out in the same way as an Int, it is important to note that t actually has type Term. We
can see how this term is represented internally, before being evaluated, with the print_term function.

sawscript> print_term t
Cryptol.ecPlus
(Prelude.Vec 8 Prelude.Bool)
(Cryptol.0OpsSeq
(Cryptol.TCNum 8)
Prelude.Bool
Cryptol.OpsBit)
(Prelude.bvNat 8 34)
(Prelude.bvNat 8 51)

For the moment, it’s not important to understand what this output means. We show it only to clarify that
Term values have their own internal structure that goes beyond what exists in SAWScript. The internal
representation of Term values is in a language called SAWCore. The full semantics of SAWCore are beyond
the scope of this manual.

The text constructed by print_term can also be accessed programmatically (instead of printing to the screen)
using the show_term function, which returns a String. The show_term function is not a command, so it
executes directly and does not need <- to bind its result. Therefore, the following will have the same result
as the print_term command above:

sawscript> let s = show_term t

sawscript> print s
Numbers are printed in decimal notation by default when printing terms, but the following two commands
can change that behavior.

set_ascii : Bool -> TopLevel ()

g d l 015 Using the Software Analysis Workbench (SAW)

set_base : Int -> Toplevel ()

The set_ascii command, when passed true, makes subsequent print_term or show_term commands print
sequences of bytes as ASCII strings (and doesn’t affect printing of anything else). The set_base command,
which supports any base from 2 through 36 (inclusive), prints all bit vectors in the given base.

A Term that represents an integer (any bit vector, as affected by set_base) can be translated into a SAWScript
Int using the eval_int : Term -> Int function. This function returns an Int if the Term can be represented
as one, and fails at runtime otherwise.

sawscript> print (eval_int t)
85
sawscript> print (eval_int {{ True 1}})

"eval_int" (<stdin>:1:1):

eval_int: argument is not a finite bitvector
sawscript> print (eval_int {{ [Truel }})

1

Similarly, values of type Bit in Cryptol can be translated into values of type Bool in SAWScript using the
eval_bool : Term -> Bool function:

sawscript> let b = {{ True }}
sawscript> print_term b
Prelude.True

sawscript> print (eval_bool b)
true

In addition to being able to extract integer and Boolean values from Cryptol expressions, Term values can
be injected into Cryptol expressions. When SAWScript evaluates a Cryptol expression between {{ and }}
delimiters, it does so with several extra bindings in scope:

e Any value in scope of SAWScript type Bool is visible in Cryptol expressions as a value of type Bit.

e Any value in scope of SAWScript type Int is visible in Cryptol expressions as a type variable. Type
variables can be demoted to numeric bit vector values using the backtick () operator.

e Any value in scope of SAWScript type Term is visible in Cryptol expressions as a value with the Cryptol
type corresponding to the internal type of the term. The power of this conversion is that the Term does
not need to have originally been derived from a Cryptol expression.

In addition to these rules, bindings created at the Cryptol level, either from included files or inside Cryptol
quoting brackets, are visible only to later Cryptol expressions, and not as SAWScript variables.

To make these rules more concrete, consider the following examples. If we bind a SAWScript Int, we can use
it as a Cryptol type variable. If we create a Term variable that internally has function type, we can apply it
to an argument within a Cryptol expression, but not at the SAWScript level:

sawscript> let n = 8

sawscript> let {{ £ (x : [n]) = x + 1 }}
sawscript> print {{ £ 2 }}

3

sawscript> print (f 2)

unbound variable: "f" (<stdin>:1:8)

g d l 015 Using the Software Analysis Workbench (SAW)

If £ was a binding of a SAWScript variable to a Term of function type, we would get a different error:

sawscript> let £ = {{ \(x : [n]) -> x + 1 }}
sawscript> print {{ f 2 }}

3

sawscript> print (f 2)

type mismatch: Int -> t.0 and Term
at "_" (REPL)
mismatched type constructors: (->) and Term

One subtlety of dealing with Terms constructed from Cryptol is that because the Cryptol expressions
themselves are type checked by the Cryptol type checker, and because they may make use of other Term
values already in scope, they are not type checked until the Cryptol brackets are evaluated. So type errors
at the Cryptol level may occur at runtime from the SAWScript perspective (though they occur before the
Cryptol expressions are run).

So far, we have talked about using Cryptol value expressions. However, SAWScript can also work with
Cryptol types. The most direct way to refer to a Cryptol type is to use type brackets: {| and |}. Any
Cryptol type written between these brackets becomes a Type value in SAWScript. Some types in Cryptol are
size types, and isomorphic to integers. These can be translated into SAWScript integers with the eval_size
function. For example:

sawscript> let {{ type n = 16 }}
sawscript> eval_size {| n |}

16

sawscript> eval_size {| 16 |}
16

For non-size types, eval_size fails at runtime:
sawscript> eval_size {| [16] |}

"eval_size" (<stdin>:1:1):
eval_size: not a numeric type

In addition to the use of brackets to write Cryptol expressions inline, several built-in functions can extract
Term values from Cryptol files in other ways. The import command at the top level imports all top-level
definitions from a Cryptol file and places them in scope within later bracketed expressions.

The cryptol_load command behaves similarly, but returns a CryptolModule instead. If any CryptolModule
is in scope, its contents are available qualified with the name of the CryptolModule variable. To see how this
works, consider the cryptol_prims function, of type () -> CryptolModule. This function returns a built-in
module containing a collection of useful Cryptol definitions that are not available in the standard Cryptol
Prelude.

The definitions in this module include (in Cryptol syntax):

trunc : {m, n} (fin m, fin n) => [m + n] -> [n]
uext : {m, n} (fin m, fin n) => [n] -> [m + n]
sgt : {n} (fin n) => [n] -> [n] -> Bit

sge : {n} (fin n) => [n] -> [n] -> Bit

g d l 015 Using the Software Analysis Workbench (SAW)

slt : {n} (fin n) => [n] -> [n] -> Bit
sle : {n} (fin n) => [n] -> [n] -> Bit

These perform bit-vector operations of truncation (trunc), unsigned extension (uext), and signed comparison
(sgt, sge, slt, and sle). These definitions are typically accessed through binding cryptol_prims to a local
variable:

sawscript> set_base 16

sawscript> let m = cryptol_prims ()

sawscript> let x = {{ (m::trunc 0x23) : [4] }}
sawscript> print x

0x3

The 8-bit value 0x23 was truncated to a 4-bit value 0x3.

Finally, a specific definition can be extracted from a CryptolModule more explicitly using the
cryptol_extract command:

cryptol_extract : CryptolModule -> String -> TopLevel Term

Transforming Term Values

The three primary functions of SAW are extracting models (Term values) from programs, transforming those
models, and proving properties about models using external provers. So far we’ve shown how to construct
Term values from Cryptol programs; later sections will describe how to extract them from other programs.
Now we show how to use the various term transformation features available in SAW.

Rewriting

Rewriting a Term consists of applying one or more rewrite rules to it, resulting in a new Term. A rewrite rule
in SAW can be specified in multiple ways:

e as the definition of a function that can be unfolded,
« as a term of Boolean type (or a function returning a Boolean) that is an equality statement, and
e as a term of equality type with a body that encodes a proof that the equality in the type is valid.

Each of these forms is a Term of a different shape. In each case the term logically consists of two parts, each of
which may contain variables (bound by enclosing lambda expressions). By thinking of the variables as holes
that may match any sub-term, the two parts of each term can both be seen as patterns. The left-hand pattern
describes a term to match (which may be a sub-term of the full term being rewritten), and the right-hand
pattern describes a term to replace it with. Any variable in the right-hand pattern must also appear in the
left-hand pattern and will be instantiated with whatever sub-term matched that variable in the original term.

For example, say we have the following Cryptol function:

\(x:[8]) -> (x x 2) + 1
We might for some reason want to replace multiplication by a power of two with a shift. We can describe this
replacement using an equality statement in Cryptol:

\(y:[8]) -> (y * 2) == (y << 1)

Interpreting this as a rewrite rule, it says that for any 8-bit vector (call it y for now), we can replace y * 2
with y << 1. Applying this rule to the earlier expression would then yield:

\N(x:[8]) -> (x << 1) + 1

g d l 015 Using the Software Analysis Workbench (SAW)

The general philosophy of rewriting is that the left and right patterns, while syntactically different, should be
semantically equivalent. Therefore, applying a set of rewrite rules should not change the fundamental meaning
of the term being rewritten. SAW is particularly focused on the task of proving that some logical statement
expressed as a Term is always true. If that is in fact the case, then the entire term can be replaced by the
term True without changing its meaning. The rewriting process can in some cases, by repeatedly applying
rules that themselves are known to be valid, reduce a complex term entirely to True, which constitutes a
proof of the original statement. In other cases, rewriting can simplify terms before sending them to external
automated provers that can then finish the job. Sometimes this simplification can help the automated provers
run more quickly, and sometimes it can help them prove things they would otherwise be unable to prove by
applying reasoning steps (rewrite rules) that are not available to the automated provers.

In practical use, rewrite rules can be aggregated into Simpset values in SAWScript. A few pre-defined
Simpset values exist:

empty_ss : Simpset
basic_ss : Simpset
cryptol_ss : () -> Simpset

The first is the empty set of rules. Rewriting with it should have no effect, but it is useful as an argument to
some of the functions that construct larger Simpset values. The basic_ss constant is a collection of rules
that are useful in most proof scripts. The cryptol_ss value includes a collection of Cryptol-specific rules.
Some of these simplify away the abstractions introduced in the translation from Cryptol to SAWCore, which
can be useful when proving equivalence between Cryptol and non-Cryptol code. Leaving these abstractions in
place is appropriate when comparing only Cryptol code, however, so cryptol_ss is not included in basic_ss.

The next set of functions add either a single rule or a list of rules to an existing Simpset.

addsimp' : Term -> Simpset -> Simpset
addsimps' : [Term] -> Simpset -> Simpset

Given a Simpset, the rewrite command applies it to an existing Term to produce a new Term.

rewrite : Simpset -> Term -> Term

To make this more concrete, we examine how the rewriting example sketched above, to convert multiplication
into shift, can work in practice. We simplify everything with cryptol_ss as we go along so that the Terms
don’t get too cluttered. First, we declare the term to be transformed:

sawscript> let term = rewrite (cryptol_ss () {{ \(x:[8]) -> (x * 2) + 1
3}

sawscript> print_term term;

\(x::Prelude.Vec 8 Prelude.Bool) ->

Prelude.bvAdd 8
(Prelude.bvMul 8 x
(Prelude.bvNat 8 2))

(Prelude.bvNat 8 1)

Next, we declare the rewrite rule:

sawscript> let rule = rewrite (cryptol_ss ()) {{ \(y:[8]) -> (y * 2) ==
(y << 1) }3};
sawscript> print_term rule;
let { xO0 = Prelude.Vec 8 Prelude.Bool;
}
in \(y::x0) ->

g d l 015 Using the Software Analysis Workbench (SAW)

Prelude.eq xO0
(Prelude.bvMul 8 y
(Prelude.bvNat 8 2))
(Prelude.bvShiftlL 8 Prelude.Bool
1
Prelude.False

y
(Prelude.bvNat 1 1))

Finally, we apply the rule to the target term:

sawscript> let result = rewrite (addsimp' rule empty_ss) term;
sawscript> print_term result;
\(x::Prelude.Vec 8 Prelude.Bool) ->
Prelude.bvAdd 8
(Prelude.bvShiftlL 8 Prelude.Bool
1
Prelude.False
X
(Prelude.bvNat 1 1))
(Prelude.bvNat 8 1)

Note that addsimp' and addsimps' take a Term or list of Terms; these could in principle be anything, and
are not necessarily terms representing logically valid equalities. They have ' suffixes because they are not
intended to be the primary interface to rewriting. When using these functions, the soundness of the proof
process depends on the correctness of these rules as a side condition.

The primary interface to rewriting uses the Theorem type instead of the Term type, as shown in the signatures
for addsimp and addsimps.

addsimp : Theorem -> Simpset -> Simpset
addsimps : [Theorem] -> Simpset -> Simpset

A Theoren is essentially a Term that is proven correct in some way. In general, a Theorem can be any
statement, and may not be useful as a rewrite rule. However, if it has the shape described earlier, it can be
used for rewriting. In the “Proofs about Terms” section, we’ll describe how to construct Theorem values from
Term values.

In the absence of user-constructed Theorem values, there are some additional built-in rules that are not
included in either basic_ss and cryptol_ss because they are not always beneficial, but that can sometimes
be helpful or essential.

add_cryptol_eqs : [String] -> Simpset -> Simpset
add_prelude_defs : [String] -> Simpset -> Simpset
add_prelude_eqs : [String] -> Simpset -> Simpset

The cryptol_ss simpset includes rewrite rules to unfold all definitions in the Cryptol SAWCore module,
but does not include any of the terms of equality type. The add_cryptol_egs function adds the terms of
equality type with the given names to the given Simpset. The add_prelude_defs and add_prelude_egs
functions add definition unfolding rules and equality-typed terms, respectively, from the SAWCore Prelude
module.

g d l 015 Using the Software Analysis Workbench (SAW)

Finally, it’s possible to construct a theorem from an arbitrary SAWCore expression (rather than a Cryptol
expression), using the core_axiom function.

core_axiom : String -> Theorem

Any Theorem introduced by this function is assumed to be correct, so use it with caution.
Folding and Unfolding

A SAWCore term can be given a name using the define function, and is then by default printed as that
name alone. A named subterm can be “unfolded” so that the original definition appears again.

define : String -> Term -> TopLevel Term
unfold_term : [String] -> Term -> Term

For example:

sawscript> let t = {{ 0x22 }}

sawscript> print_term t

Prelude.bvNat 8 34

sawscript> t' <- define "t" t

sawscript> print_term t'

t

sawscript> let t'' = unfold_term ["t"] t'
sawscript> print_term t''

Prelude.bvNat 8 34

This process of folding and unfolding is useful both to make large terms easier for humans to work with
and to make automated proofs more tractable. We’ll describe the latter in more detail when we discuss
interacting with external provers.

In some cases, folding happens automatically when constructing Cryptol expressions. Consider the following
example:

sawscript> let t = {{ 0x22 }}
sawscript> print_term t
Prelude.bvNat 8 34

sawscript> let {{ t' = 0x22 }}
sawscript> print_term {{ t' }}
t

This illustrates that a bare expression in Cryptol braces gets translated directly to a SAWCore term. However,
a Cryptol definition gets translated into a folded SAWCore term. In addition, because the second definition
of t occurs at the Cryptol level, rather than the SAWScript level, it is visible only inside Cryptol braces.
Definitions imported from Cryptol source files are also initially folded and can be unfolded as needed.

Other Built-in Transformation and Inspection Functions
In addition to the Term transformation functions described so far, a variety of others also exist.

beta_reduce_term : Term -> Term
replace : Term -> Term -> Term -> TopLevel Term

The beta_reduce_term function takes any sub-expression of the form (\x -> t)v in the given Term and
replaces it with a transformed version of t in which all instances of x are replaced by v.

g d l 015 Using the Software Analysis Workbench (SAW)

The replace function replaces arbitrary subterms. A call to replace x y t replaces any instance of x inside
t with y.

Assessing the size of a term can be particularly useful during benchmarking. SAWScript provides two
mechanisms for this.

term_size : Term -> Int

term_tree_size : Term -> Int

The first, term_size, calculates the number of nodes in the Directed Acyclic Graph (DAG) representation
of a Term used internally by SAW. This is the most appropriate way of determining the resource use of a
particular term. The second, term_tree_size, calculates how large a Term would be if it were represented by
a tree instead of a DAG. This can, in general, be much, much larger than the number returned by term_size,
and serves primarily as a way of assessing, for a specific term, how much benefit there is to the term sharing
used by the DAG representation.

Finally, there are a few commands related to the internal SAWCore type of a Term.

check_term : Term -> TopLevel ()
type : Term -> Type

The check_term command checks that the internal structure of a Term is well-formed and that it passes all
of the rules of the SAWCore type checker. The type function returns the type of a particular Term, which
can then be used to, for example, construct a new fresh variable with fresh_symbolic.

Loading and Storing Terms

Most frequently, Term values in SAWScript come from Cryptol, JVM, or LLVM programs, or some transfor-
mation thereof. However, it is also possible to obtain them from various other sources.

parse_core : String -> Term
read_aig : String -> ToplLevel Term
read_bytes : String -> ToplLevel Term

read_core : String -> TopLevel Term

The parse_core function parses a String containing a term in SAWCore syntax, returning a Term. The
read_core command is similar, but obtains the text from the given file and expects it to be in the simpler
SAWCore external representation format, rather than the human-readable syntax shown so far. The
read_aig command returns a Term representation of an And-Inverter-Graph (AIG) file in AIGER format.
The read_bytes command reads a constant sequence of bytes from a file and represents it as a Term. Its
result will always have Cryptol type [n] [8] for some n.

It is also possible to write Term values into files in various formats, including: AIGER (write_aig), CNF
(write_cnf), SAWCore external representation (write_core), and SMT-Lib version 2 (write_smtlib2).

write_aig : String -> Term -> TopLevel ()
write_cnf : String -> Term -> TopLevel ()
write_core : String -> Term -> TopLevel ()

write_smtlib2 : String -> Term -> ToplLevel ()

g d l 015 Using the Software Analysis Workbench (SAW)

Proofs about Terms

The goal of SAW is to facilitate proofs about the behavior of programs. It may be useful to prove some small
fact to use as a rewrite rule in later proofs, but ultimately these rewrite rules come together into a proof of
some higher-level property about a software system.

Whether proving small lemmas (in the form of rewrite rules) or a top-level theorem, the process builds on the
idea of a proof script that is run by one of the top level proof commands.

prove_print : ProofScript SatResult -> Term -> TopLevel Theorem
sat_print : ProofScript SatResult -> Term -> TopLevel ()

The prove_print command takes a proof script (which we’ll describe next) and a Term. The Term should be
of function type with a return value of Bool (Bit at the Cryptol level). It will then use the proof script to
attempt to show that the Term returns True for all possible inputs. If it is successful, it will print Valid and
return a Theorem. If not, it will abort.

The sat_print command is similar except that it looks for a single value for which the Term evaluates to
True and prints out that value, returning nothing.

A similar command to prove_print, prove_core, can produce a Theorem from a string containing a SAWCore
term.

prove_core : ProofScript SatResult -> String -> ToplLevel Theorem

Automated Tactics

The simplest proof scripts just specify the automated prover to use. The ProofScript values abc and z3
select the ABC and Z3 theorem provers, respectively, and are typically good choices.

For example, combining prove_print with abc:

sawscript> t <- prove_print abc {{ \(x:[8]) -> x+x == x*2 }}
Valid
sawscript> t
Theorem (let { x0 = Cryptol.TCSeq (Cryptol.TCNum 8) Cryptol.TCBit;
x1 = Cryptol.ePArith x0;
}
in \(x::Prelude.Vec 8 Prelude.Bool) ->
Cryptol.ecEq xO
(Cryptol.ePCmp x0)
(Cryptol.ecPlus x0 x1 x x)
(Cryptol.ecMul x0 x1 x
(Prelude.bvNat 8 2)))

Similarly, sat_print will show that the function returns True for one specific input (which it should, since
we already know it returns True for all inputs):

sawscript> sat_print abc {{ \(x:[8]) -> x+x == x*2 }}
Sat: [x = 0]

In addition to these, the boolector, cvcd, mathsat, and yices provers are available. The internal decision
procedure rme, short for Reed-Muller Expansion, is an automated prover that works particularly well on the
Galois field operations that show up, for example, in AES.

In more complex cases, some pre-processing can be helpful or necessary before handing the problem off to an
automated prover. The pre-processing can involve rewriting, beta reduction, unfolding, the use of provers

g d l 015 Using the Software Analysis Workbench (SAW)

that require slightly more configuration, or the use of provers that do very little real work.
Proof Script Diagnostics

During development of a proof, it can be useful to print various information about the current goal. The
following tactics are useful in that context.

print_goal : ProofScript ()
print_goal_consts : ProofScript ()
print_goal_depth : Int -> ProofScript ()
print_goal_size : ProofScript ()

The print_goal tactic prints the entire goal in SAWCore syntax. The print_goal_depth is intended for
especially large goals. It takes an integer argument, n, and prints the goal up to depth n. Any elided subterms
are printed with a ... notation. The print_goal_consts tactic prints a list of the names of subterms that
are folded in the current goal, and print_goal_size prints the number of nodes in the DAG representation
of the goal.

Rewriting in Proof Scripts

The simplify command works just like the rewrite command, except that it works in a ProofScript
context and implicitly transforms the current (unnamed) goal rather than taking a Term as a parameter.

simplify : Simpset -> ProofScript ()

Other Transformations

Some useful transformations are not easily specified using equality statements, and instead have special
tactics.

beta_reduce_goal : ProofScript ()
unfolding : [Stringl -> ProofScript ()
The beta_reduce_goal tactic takes any sub-expression of the form (\x -> t)v and replaces it with a

transformed version of t in which all instances of x are replaced by v.

The unfolding tactic works like unfold_term but on the current goal. Using unfolding is mostly valuable
for proofs based entirely on rewriting, since default behavior for automated provers is to unfold everything
before sending a goal to a prover. However, with Z3 and CVC4, it is possible to indicate that specific named
subterms should be represented as uninterpreted functions.

unint_cvc4d : [String] -> ProofScript SatResult
unint_yices : [String] -> ProofScript SatResult
unint_z3 : [String] -> ProofScript SatResult

The list of String arguments in these cases indicates the names of the subterms to leave folded, and therefore
present as uninterpreted functions to the prover. To determine which folded constants appear in a goal, use
the print_goal_consts function described above.

Ultimately, we plan to implement a more generic tactic that leaves certain constants uninterpreted in whatever
prover is ultimately used (provided that uninterpreted functions are expressible in the prover).

g d l 015 Using the Software Analysis Workbench (SAW)

Other External Provers

In addition to the built-in automated provers already discussed, SAW supports more generic interfaces to
other arbitrary theorem provers supporting specific interfaces.

external_aig_solver : String -> [String] -> ProofScript SatResult
external_cnf_solver : String -> [String] -> ProofScript SatResult

The external_aig_solver function supports theorem provers that can take input as a single-output AIGER
file. The first argument is the name of the executable to run. The second argument is the list of command-line
parameters to pass to that executable. Within this list, any element that consists of %f on its own is replaced
with the name of the temporary AIGER file generated for the proof goal. The output from the solver is
expected to be in DIMACS solution format.

The external_cnf_solver function works similarly but for SAT solvers that take input in DIMACS CNF
format and produce output in DIMACS solution format.

Offline Provers

For provers that must be invoked in more complex ways, or to defer proof until a later time, there are
functions to write the current goal to a file in various formats, and then assume that the goal is valid through
the rest of the script.

offline_aig : String -> ProofScript SatResult
offline_cnf : String -> ProofScript SatResult
offline_extcore : String -> ProofScript SatResult
offline_smtlib2 : String -> ProofScript SatResult
offline_unint_smtlib2 : [String] -> String -> ProofScript SatResult
These support the AIGER, DIMACS CNF, shared SAWCore, and SMT-Lib v2 formats, respectively. The

shared representation for SAWCore is described in the saw-script repository. The offline_unint_smtlib2
command represents the folded subterms listed in its first argument as uninterpreted functions.

Miscellaneous Tactics

Some proofs can be completed using unsound placeholders, or using techniques that do not require significant

computation.
assume_unsat : ProofScript SatResult
assume_valid : ProofScript ProofResult

quickcheck : Int -> ProofScript SatResult
trivial : ProofScript SatResult

The assume_unsat and assume_valid tactics indicate that the current goal should be considered unsatisfiable
or valid, depending on whether the proof script is checking satisfiability or validity. At the moment,
java_verify and 1lvm_verify run their proofs in the a satisfiability-checking context, so assume_unsat is
currently the appropriate tactic. This is likely to change in the future.

The quickcheck tactic runs the goal on the given number of random inputs, and succeeds if the result of

../extcore.txt

g d l 015 Using the Software Analysis Workbench (SAW)

evaluation is always True. This is unsound, but can be helpful during proof development, or as a way to
provide some evidence for the validity of a specification believed to be true but difficult or infeasible to prove.

The trivial tactic states that the current goal should be trivially true (i.e., the constant True or a function
that immediately returns True). It fails if that is not the case.

Proof Failure and Satisfying Assignments

The prove_print and sat_print commands print out their essential results (potentially returning a Theorem
in the case of prove_print). In some cases, though, one may want to act programmatically on the result of
a proof rather than displaying it.

The prove and sat commands allow this sort of programmatic analysis of proof results. To allow this, they
use two types we haven’t mentioned yet: ProofResult and SatResult. These are different from the other
types in SAWScript because they encode the possibility of two outcomes. In the case of ProofResult, a
statement may be valid or there may be a counter-example. In the case of SatResult, there may be a
satisfying assignment or the statement may be unsatisfiable.

prove : ProofScript SatResult -> Term -> ToplLevel ProofResult
sat : ProofScript SatResult -> Term -> TopLevel SatResult

To operate on these new types, SAWScript includes a pair of functions:

caseProofResult : {b} ProofResult -> b -> (Term -> b) -> b
caseSatResult : {b} SatResult -> b -> (Term -> b) -> b

The caseProofResult function takes a ProofResult, a value to return in the case that the statement is
valid, and a function to run on the counter-example, if there is one. The caseSatResult function has the
same shape: it returns its first argument if the result represents an unsatisfiable statement, or its second
argument applied to a satisfying assignment i