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Overview
The Software Analysis Workbench (SAW) is a tool for constructing mathematical models of the computational
behavior of software, transforming these models, and proving properties about them.

SAW can currently construct models of a subset of programs written in Cryptol, LLVM (and therefore C),
and JVM (and therefore Java). The models take the form of typed functional programs, so in a sense SAW
can be considered a translator from imperative programs to their functional equivalents. Various external
proof tools, including a variety of SAT and SMT solvers, can be used to prove properties about the functional
models. SAW can construct models from arbitrary Cryptol programs, and from C and Java programs that
have fixed-size inputs and outputs and that terminate after a fixed number of iterations of any loop (or a
fixed number of recursive calls). One common use case is to verify that an algorithm specification in Cryptol
is equivalent to an algorithm implementation in C or Java.

The process of extracting models from programs, manipulating them, forming queries about them, and sending
them to external provers is orchestrated using a special purpose language called SAWScript. SAWScript is a
typed functional language with support for sequencing of imperative commmands.

The rest of this document first describes how to use the SAW tool, saw, and outlines the structure of
the SAWScript language and its relationship to Cryptol. It then presents the SAWScript commands that
transform functional models and prove properties about them. Finally, it describes the specific commands
available for constructing models from imperative programs.

Invoking SAW
The primary mechanism for interacting with SAW is through the saw executable included as part of the
standard binary distribution. With no arguments, saw starts a read-evaluate-print loop (REPL) that allows
the user to interactively evaluate commands in the SAWScript language. With one file name argument, it
executes the specified file as a SAWScript program.

In addition to a file name, the saw executable accepts several command-line options:

-h, -?, --help Print a help message.

-V, --version Show the version of the SAWScript interpreter.

-c path, --classpath=path Specify a colon-delimited list of paths to search for Java classes.
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-i path, --import-path=path Specify a colon-delimited list of paths to search for imports.

-t, --extra-type-checking Perform extra type checking of intermediate values.

-I, --interactive Run interactively (with a REPL). This is the default if no other arguments are specified.

-j path, --jars=path Specify a colon-delimited list of paths to .jar files to search for Java classes.

-d num, --sim-verbose=num Set the verbosity level of the Java and LLVM simulators.

-v num, --verbose=num Set the verbosity level of the SAWScript interpreter.

SAW also uses several environment variables for configuration:

CRYPTOLPATH Specify a colon-delimited list of directory paths to search for Cryptol imports (including the
Cryptol prelude).

SAW_IMPORT_PATH Specify a colon-delimited list of directory paths to search for imports.

SAW_JDK_JAR Specify the path of the .jar file containing the core Java libraries.

On Windows, semicolon-delimited lists are used instead of colon-delimited lists.

Structure of SAWScript
A SAWScript program consists, at the top level, of a sequence of commands to be executed in order. Each
command is terminated with a semicolon. For example, the print command displays a textual representation
of its argument. Suppose the following text is stored in the file print.saw:

print 3;

The command saw print.saw will then yield output similar to the following:

Loading module Cryptol
Loading file "print.saw"
3

The same code can be run from the interactive REPL:

sawscript > print 3;
3

At the REPL, terminating semicolons can be omitted:

sawscript > print 3
3

To make common use cases simpler, bare values at the REPL are treated as if they were arguments to print:

sawscript > 3
3

One SAWScript file can be included in another using the include command, which takes the name of the file
to be included as an argument. For example:

sawscript > include "print.saw"
Loading file "print.saw"
3
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Typically, included files are used to import definitions, not perform side effects like printing. However, as you
can see, if any commands with side effects occur at the top level of the imported file, those side effects will
occur during import.

Syntax
The syntax of SAWScript is reminiscent of functional languages such as Cryptol, Haskell and ML. In particular,
functions are applied by writing them next to their arguments rather than by using parentheses and commas.
Rather than writing f(x, y), write f x y.

Comments are written as in C and Java (among many other languages). All text from // until the end of a
line is ignored. Additionally, all text between /* and */ is ignored, regardless of whether the line ends.

Basic Types and Values
All values in SAWScript have types, and these types are determined and checked before a program runs (that
is, SAWScript is statically typed). The basic types available are similar to those in many other languages.

• The Int type represents unbounded mathematical integers. Integer constants can be written in decimal
notation (e.g., 42), hexadecimal notation (0x2a), and binary (0b00101010). However, unlike many
languages, integers in SAWScript are used primarily as constants. Arithmetic is usually encoded in
Cryptol, as discussed in the next section.

• The Boolean type, Bool, contains the values true and false, like in many other languages. As with
integers, computations on Boolean values usually occur in Cryptol.

• Values of any type can be aggregated into tuples. For example, the value (true, 10) has the type
(Bool, Int).

• Values of any type can also be aggregated into records, which are exactly like tuples except that their
components have names. For example, the value { b = true, n = 10 } has the type { b : Bool, n
: Int }.

• A sequence of values of the same type can be stored in a list. For example, the value [true, false,
true] has the type [Bool].

• Strings of textual characters can be represented in the String type. For example, the value "example"
has type String.

• The “unit” type, written (), is essentially a placeholder, similar to void in languages like C and Java.
It has only one value, also written (). Values of type () convey no information. We will show in later
sections several cases where this is useful.

• Functions are given types that indicate what type they consume and what type they produce. For
example, the type Int -> Bool indicates a function that takes an Int as input and produces a Bool
as output.

SAWScript also includes some more specialized types that do not have straightforward counterparts in most
other languages. These will appear in later sections.

Basic Expression Forms
One of the key forms of top-level command in SAWScript is a binding, introduced with the let keyword,
which gives a name to a value. For example:

sawscript > let x = 5
sawscript > x
5

© 2019 Galois, Inc. Page 4



Using the Software Analysis Workbench (SAW)

Bindings can have parameters, in which case they define functions. For instance, the following function takes
one parameter and constructs a list containing that parameter as its single element.

sawscript > let f x = [x]
sawscript > f "text"
[" text "]

Functions themselves are values and have types. The type of a function that takes an argument of type a
and returns a result of type b is a -> b.

Function types are typically inferred, as in the example f above. In this case, because f only creates a list
with the given argument, and because it is possible to create a list of any element type, f can be applied to
an argument of any type. We say, therefore, that f is polymorphic. Concretely, we write the type of f as
{a} a -> [a], meaning it takes a value of any type (denoted a) and returns a list containing elements of
that same type. This means we can also apply f to 10:

sawscript > f 10
[10]

However, we may want to specify that a function has a more specific type. In this case, we could restrict f to
operate only on Int parameters.

sawscript > let f (x : Int) = [x]

This will work identically to the original f on an Int parameter:

sawscript > f 10
[10]

However, it will fail for a String parameter:

sawscript > f "text"

type mismatch : String -> t.0 and Int -> [Int]
at "_" (REPL)

mismatched type constructors : String and Int

Type annotations can be applied to any expression. The notation (e : t) indicates that expression e is
expected to have type t and that it is an error for e to have a different type. Most types in SAWScript are
inferred automatically, but specifying them explicitly can sometimes enhance readability.

Because functions are values, functions can return other functions. We make use of this feature when writing
functions of multiple arguments. Consider the function g, similar to f but with two arguments:

sawscript > let g x y = [x, y]

Like f, g is polymorphic. Its type is {a} a -> a -> [a]. This means it takes an argument of type a and
returns a function that takes an argument of the same type a and returns a list of a values. We can therefore
apply g to any two arguments of the same type:

sawscript > g 2 3
[2 ,3]
sawscript > g true false
[true ,false]

But type checking will fail if we apply it to two values of different types:
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sawscript > g 2 false

type mismatch : Bool -> t.0 and Int -> [Int]
at "_" (REPL)

mismatched type constructors : Bool and Int

So far we have used two related terms, function and command, and we take these to mean slightly different
things. A function is any value with a function type (e.g., Int -> [Int]). A command is any value with a
special command type (e.g. TopLevel (), as shown below). These special types allow us to restrict command
usage to specific contexts, and are also parameterized (like the list type). Most but not all commands are also
functions.

The most important command type is the TopLevel type, indicating a command that can run at the top level
(directly at the REPL, or as one of the top level commands in a script file). The print command has the
type {a} a -> TopLevel (), where TopLevel () means that it is a command that runs in the TopLevel
context and returns a value of type () (that is, no useful information). In other words, it has a side effect
(printing some text to the screen) but doesn’t produce any information to use in the rest of the SAWScript
program. This is the primary usage of the () type.

It can sometimes be useful to bind a sequence of commands together. This can be accomplished with the
do { ... } construct. For example:

sawscript > let print_two = do { print "first "; print " second "; }
sawscript > print_two
first
second

The bound value, print_two, has type TopLevel (), since that is the type of its last command.

Note that in the previous example the printing doesn’t occur until print_two directly appears at the REPL.
The let expression does not cause those commands to run. The construct that runs a command is written
using the <- operator. This operator works like let except that it says to run the command listed on the
right hand side and bind the result, rather than binding the variable to the command itself. Using <- instead
of let in the previous example yields:

sawscript > print_two <- do { print "first "; print " second "; }
first
second
sawscript > print print_two
()

Here, the print commands run first, and then print_two gets the value returned by the second print
command, namely (). Any command run without using <- at either the top level of a script or within a do
block discards its result. However, the REPL prints the result of any command run without using the <-
operator.

In some cases it can be useful to have more control over the value returned by a do block. The return
command allows us to do this. For example, say we wanted to write a function that would print a message
before and after running some arbitrary command and then return the result of that command. We could
write:

let run_with_message msg c =
do {

print " Starting .";
print msg;
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res <- c;
print "Done .";
return res;

};

x <- run_with_message "Hello" ( return 3);
print x;

If we put this script in run.saw and run it with saw, we get something like:

Loading module Cryptol
Loading file "run.saw"
Starting .
Hello
Done.
3

Note that it ran the first print command, then the caller-specified command, then the second print command.
The result stored in x at the end is the result of the return command passed in as an argument.

Other Basic Functions
Aside from the functions we have listed so far, there are a number of other operations for working with basic
data structures and interacting with the operating system.

The following functions work on lists:

• concat : {a} [a] -> [a] -> [a] takes two lists and returns the concatenation of the two.

• head : {a} [a] -> a returns the first element of a list.

• tail : {a} [a] -> [a] returns everything except the first element.

• length : {a} [a] -> Int counts the number of elements in a list.

• null : {a} [a] -> Bool indicates whether a list is empty (has zero elements).

• nth : {a} [a] -> Int -> a returns the element at the given position, with nth l 0 being equivalent
to head l.

• for : {m, a, b} [a] -> (a -> m b)-> m [b] takes a list and a function that runs in some command
context. The passed command will be called once for every element of the list, in order. Returns a list
of all of the results produced by the command.

For interacting with the operating system, we have:

• get_opt : Int -> String returns the command-line argument to saw at the given index. Argument
0 is always the name of the saw executable itself, and higher indices represent later arguments.

• exec : String -> [String] -> String -> TopLevel String runs an external program given, re-
spectively, an executable name, a list of arguments, and a string to send to the standard input of the
program. The exec command returns the standard output from the program it executes and prints
standard error to the screen.

• exit : Int -> TopLevel () stops execution of the current script and returns the given exit code to
the operating system.

Finally, there are a few miscellaneous functions and commands:
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• show : {a} a -> String computes the textual representation of its argument in the same way as
print, but instead of displaying the value it returns it as a String value for later use in the program.
This can be useful for constructing more detailed messages later.

• str_concat : String -> String -> String concatenates two String values, and can also be useful
with show.

• time : {a} TopLevel a -> TopLevel a runs any other TopLevel command and prints out the time
it took to execute.

• with_time : {a} TopLevel a -> TopLevel (Int, a) returns both the original result of the timed
command and the time taken to execute it (in milliseconds), without printing anything in the process.

The Term Type
Perhaps the most important type in SAWScript, and the one most unlike the built-in types of most other
languages, is the Term type. Essentially, a value of type Term precisely describes all possible computations
performed by some program. In particular, if two Term values are equivalent, then the programs that they
represent will always compute the same results given the same inputs. We will say more later about exactly
what it means for two terms to be equivalent, and how to determine whether two terms are equivalent.

Before exploring the Term type more deeply, it is important to understand the role of the Cryptol language
in SAW.

Cryptol and its Role in SAW
Cyptol is a domain-specific language originally designed for the high-level specification of cryptographic
algorithms. It is general enough, however, to describe a wide variety of programs, and is particularly applicable
to describing computations that operate on streams of data of some fixed size.

In addition to being integrated into SAW, Cryptol is a standalone language with its own manual:

http :// cryptol .net/files/ ProgrammingCryptol .pdf

SAW includes deep support for Cryptol, and in fact requires the use of Cryptol for most non-trivial tasks.
To fully understand the rest of this manual and to effectively use SAW, you will need to develop at least a
rudimentary understanding of Cryptol.

The primary use of Cryptol within SAWScript is to construct values of type Term. Although Term values can
be constructed from various sources, inline Cryptol expressions are the most direct and convenient way to
create them.

Specifically, a Cryptol expression can be placed inside double curly braces ({{ and }}), resulting in a value of
type Term. As a very simple example, there is no built-in integer addition operation in SAWScript. However,
we can use Cryptol’s built-in integer addition operator within SAWScript as follows:

sawscript > let t = {{ 0x22 + 0x33 }}
sawscript > print t
85
sawscript > :type t
Term

Although it printed out in the same way as an Int, it is important to note that t actually has type Term. We
can see how this term is represented internally, before being evaluated, with the print_term function.
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sawscript > print_term t
let { x@1 = Prelude .Vec 8 Prelude .Bool

x@2 = Cryptol .TCNum 8
x@3 = Cryptol . PLiteralSeqBool x@2

}
in Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool x@2)

( Cryptol . ecNumber ( Cryptol .TCNum 34) x@1 x@3)
( Cryptol . ecNumber ( Cryptol .TCNum 51) x@1 x@3)

For the moment, it’s not important to understand what this output means. We show it only to clarify that
Term values have their own internal structure that goes beyond what exists in SAWScript. The internal
representation of Term values is in a language called SAWCore. The full semantics of SAWCore are beyond
the scope of this manual.

The text constructed by print_term can also be accessed programmatically (instead of printing to the screen)
using the show_term function, which returns a String. The show_term function is not a command, so it
executes directly and does not need <- to bind its result. Therefore, the following will have the same result
as the print_term command above:

sawscript > let s = show_term t
sawscript > :type s
String
sawscript > print s
<same as above >

Numbers are printed in decimal notation by default when printing terms, but the following two commands
can change that behavior.

• set_ascii : Bool -> TopLevel (), when passed true, makes subsequent print_term or show_term
commands print sequences of bytes as ASCII strings (and doesn’t affect printing of anything else).

• set_base : Int -> TopLevel () prints all bit vectors in the given base, which can be between 2 and
36 (inclusive).

A Term that represents an integer (any bit vector, as affected by set_base) can be translated into a SAWScript
Int using the eval_int : Term -> Int function. This function returns an Int if the Term can be represented
as one, and fails at runtime otherwise.

sawscript > print ( eval_int t)
85
sawscript > print ( eval_int {{ True }})

" eval_int " (<stdin >:1:1) :
eval_int : argument is not a finite bitvector
sawscript > print ( eval_int {{ [True] }})
1

Similarly, values of type Bit in Cryptol can be translated into values of type Bool in SAWScript using the
eval_bool : Term -> Bool function:

sawscript > let b = {{ True }}
sawscript > print_term b
Prelude .True
sawscript > print ( eval_bool b)
true
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Finally, anything with sequence type in Cryptol can be translated into a list of Term values in SAWScript
using the eval_list : Term -> [Term] function.

sawscript > let l = {{ [0x01 , 0x02 , 0x03] }}
sawscript > print_term l
let { x@1 = Prelude .Vec 8 Prelude .Bool

x@2 = Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8)
}

in [ Cryptol . ecNumber ( Cryptol .TCNum 1) x@1 x@2
,Cryptol . ecNumber ( Cryptol .TCNum 2) x@1 x@2
,Cryptol . ecNumber ( Cryptol .TCNum 3) x@1 x@2]

sawscript > print ( eval_list l)
[ Cryptol . ecNumber ( Cryptol .TCNum 1) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))
,Cryptol . ecNumber ( Cryptol .TCNum 2) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))
,Cryptol . ecNumber ( Cryptol .TCNum 3) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))]

In addition to being able to extract integer and Boolean values from Cryptol expressions, Term values can
be injected into Cryptol expressions. When SAWScript evaluates a Cryptol expression between {{ and }}
delimiters, it does so with several extra bindings in scope:

• Any variable in scope that has SAWScript type Bool is visible in Cryptol expressions as a value of type
Bit.

• Any variable in scope that has SAWScript type Int is visible in Cryptol expressions as a type variable.
Type variables can be demoted to numeric bit vector values using the backtick (`) operator.

• Any variable in scope that has SAWScript type Term is visible in Cryptol expressions as a value with
the Cryptol type corresponding to the internal type of the term. The power of this conversion is that
the Term does not need to have originally been derived from a Cryptol expression.

In addition to these rules, bindings created at the Cryptol level, either from included files or inside Cryptol
quoting brackets, are visible only to later Cryptol expressions, and not as SAWScript variables.

To make these rules more concrete, consider the following examples. If we bind a SAWScript Int, we can use
it as a Cryptol type variable. If we create a Term variable that internally has function type, we can apply it
to an argument within a Cryptol expression, but not at the SAWScript level:

sawscript > let n = 8
sawscript > :type n
Int
sawscript > let {{ f (x : [n]) = x + 1 }}
sawscript > :type {{ f }}
Term
sawscript > :type f

<stdin >:1:1 -1:2: unbound variable : "f" (<stdin >:1:1 -1:2)
sawscript > print {{ f 2 }}
3

If f was a binding of a SAWScript variable to a Term of function type, we would get a different error:

sawscript > let f = {{ \(x : [n]) -> x + 1 }}
sawscript > :type {{ f }}

© 2019 Galois, Inc. Page 10



Using the Software Analysis Workbench (SAW)

Term
sawscript > :type f
Term
sawscript > print {{ f 2 }}
3
sawscript > print (f 2)

type mismatch : Int -> t.0 and Term
at "_" (REPL)
mismatched type constructors : (->) and Term

One subtlety of dealing with Terms constructed from Cryptol is that because the Cryptol expressions
themselves are type checked by the Cryptol type checker, and because they may make use of other Term
values already in scope, they are not type checked until the Cryptol brackets are evaluated. So type errors
at the Cryptol level may occur at runtime from the SAWScript perspective (though they occur before the
Cryptol expressions are run).

So far, we have talked about using Cryptol value expressions. However, SAWScript can also work with
Cryptol types. The most direct way to refer to a Cryptol type is to use type brackets: {| and |}. Any
Cryptol type written between these brackets becomes a Type value in SAWScript. Some types in Cryptol are
size types, and isomorphic to integers. These can be translated into SAWScript integers with the eval_size
function. For example:

sawscript > let {{ type n = 16 }}
sawscript > eval_size {| n |}
16
sawscript > eval_size {| 16 |}
16

For non-size types, eval_size fails at runtime:

sawscript > eval_size {| [16] |}

" eval_size " (<stdin >:1:1) :
eval_size : not a numeric type

In addition to the use of brackets to write Cryptol expressions inline, several built-in functions can extract
Term values from Cryptol files in other ways. The import command at the top level imports all top-level
definitions from a Cryptol file and places them in scope within later bracketed expressions.

The cryptol_load command behaves similarly, but returns a CryptolModule instead. If any CryptolModule
is in scope, its contents are available qualified with the name of the CryptolModule variable. A specific
definition can be explicitly extracted from a CryptolModule using the cryptol_extract command:

• cryptol_extract : CryptolModule -> String -> TopLevel Term

Transforming Term Values
The three primary functions of SAW are extracting models (Term values) from programs, transforming those
models, and proving properties about models using external provers. So far we’ve shown how to construct
Term values from Cryptol programs; later sections will describe how to extract them from other programs.
Now we show how to use the various term transformation features available in SAW.
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Rewriting
Rewriting a Term consists of applying one or more rewrite rules to it, resulting in a new Term. A rewrite rule
in SAW can be specified in multiple ways:

1. as the definition of a function that can be unfolded,
2. as a term of Boolean type (or a function returning a Boolean) that is an equality statement, and
3. as a term of equality type with a body that encodes a proof that the equality in the type is valid.

In each case the term logically consists of two sides and describes a way to transform the left side into the
right side. Each side may contain variables (bound by enclosing lambda expressions) and is therefore a pattern
which can match any term in which each variable represents an arbitrary sub-term. The left-hand pattern
describes a term to match (which may be a sub-term of the full term being rewritten), and the right-hand
pattern describes a term to replace it with. Any variable in the right-hand pattern must also appear in the
left-hand pattern and will be instantiated with whatever sub-term matched that variable in the original term.

For example, say we have the following Cryptol function:

\(x:[8]) -> (x * 2) + 1

We might for some reason want to replace multiplication by a power of two with a shift. We can describe this
replacement using an equality statement in Cryptol (a rule of form 2 above):

\(y:[8]) -> (y * 2) == (y << 1)

Interpreting this as a rewrite rule, it says that for any 8-bit vector (call it y for now), we can replace y * 2
with y << 1. Using this rule to rewrite the earlier expression would then yield:

\(x:[8]) -> (x << 1) + 1

The general philosophy of rewriting is that the left and right patterns, while syntactically different, should be
semantically equivalent. Therefore, applying a set of rewrite rules should not change the fundamental meaning
of the term being rewritten. SAW is particularly focused on the task of proving that some logical statement
expressed as a Term is always true. If that is in fact the case, then the entire term can be replaced by the
term True without changing its meaning. The rewriting process can in some cases, by repeatedly applying
rules that themselves are known to be valid, reduce a complex term entirely to True, which constitutes a
proof of the original statement. In other cases, rewriting can simplify terms before sending them to external
automated provers that can then finish the job. Sometimes this simplification can help the automated provers
run more quickly, and sometimes it can help them prove things they would otherwise be unable to prove by
applying reasoning steps (rewrite rules) that are not available to the automated provers.

In practical use, rewrite rules can be aggregated into Simpset values in SAWScript. A few pre-defined
Simpset values exist:

• empty_ss : Simpset is the empty set of rules. Rewriting with it should have no effect, but it is useful
as an argument to some of the functions that construct larger Simpset values.

• basic_ss : Simpset is a collection of rules that are useful in most proof scripts.

• cryptol_ss : ()-> Simpset includes a collection of Cryptol-specific rules. Some of these simplify
away the abstractions introduced in the translation from Cryptol to SAWCore, which can be useful
when proving equivalence between Cryptol and non-Cryptol code. Leaving these abstractions in place is
appropriate when comparing only Cryptol code, however, so cryptol_ss is not included in basic_ss.

The next set of functions can extend or apply a Simpset:

• addsimp' : Term -> Simpset -> Simpset adds a single Term to an existing ‘Simpset.

• addsimps' : [Term] -> Simpset -> Simpset adds a list of Terms to an existing Simpset.
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• rewrite : Simpset -> Term -> Term applies a Simpset to an existing Term to produce a new Term.

To make this more concrete, we examine how the rewriting example sketched above, to convert multiplication
into shift, can work in practice. We simplify everything with cryptol_ss as we go along so that the Terms
don’t get too cluttered. First, we declare the term to be transformed:

sawscript > let term = rewrite ( cryptol_ss ()) {{ \(x:[8]) -> (x * 2) + 1
}}

sawscript > print_term term
\(x : Prelude .Vec 8 Prelude .Bool) ->

Prelude .bvAdd 8 ( Prelude .bvMul 8 x ( Prelude .bvNat 8 2))
( Prelude .bvNat 8 1)

Next, we declare the rewrite rule:
sawscript > let rule = rewrite ( cryptol_ss ()) {{ \(y:[8]) -> (y * 2) ==

(y << 1) }}
sawscript > print_term rule
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in \(y : x@1) ->

Cryptol .ecEq x@1 ( Cryptol . PCmpWord 8)
( Prelude .bvMul 8 y ( Prelude .bvNat 8 2))
( Prelude . bvShiftL 8 Prelude .Bool 1 Prelude .False y

( Prelude .bvNat 1 1))

Finally, we apply the rule to the target term:
sawscript > let result = rewrite (addsimp ' rule empty_ss ) term
sawscript > print_term result
\(x : Prelude .Vec 8 Prelude .Bool) ->

Prelude .bvAdd 8
( Prelude . bvShiftL 8 Prelude .Bool 1 Prelude .False x

( Prelude .bvNat 1 1))
( Prelude .bvNat 8 1)

Note that addsimp' and addsimps' take a Term or list of Terms; these could in principle be anything, and
are not necessarily terms representing logically valid equalities. They have ' suffixes because they are not
intended to be the primary interface to rewriting. When using these functions, the soundness of the proof
process depends on the correctness of these rules as a side condition.

The primary interface to rewriting uses the Theorem type instead of the Term type, as shown in the signatures
for addsimp and addsimps.

• addsimp : Theorem -> Simpset -> Simpset adds a single Theorem to a Simpset.

• addsimps : [Theorem] -> Simpset -> Simpset adds several Theorem values to a Simpset.

A Theorem is essentially a Term that is proven correct in some way. In general, a Theorem can be any
statement, and may not be useful as a rewrite rule. However, if it has an appropriate shape it can be used for
rewriting. In the “Proofs about Terms” section, we’ll describe how to construct Theorem values from Term
values.

In the absence of user-constructed Theorem values, there are some additional built-in rules that are not
included in either basic_ss and cryptol_ss because they are not always beneficial, but that can sometimes
be helpful or essential. The cryptol_ss simpset includes rewrite rules to unfold all definitions in the Cryptol
SAWCore module, but does not include any of the terms of equality type.
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• add_cryptol_eqs : [String] -> Simpset -> Simpset adds the terms of equality type with the
given names from the SAWCore Cryptol module to the given Simpset.

• add_prelude_defs : [String] -> Simpset -> Simpset adds unfolding rules from the SAWCore
Prelude module to a Simpset.

• add_prelude_eqs : [String] -> Simpset -> Simpset adds equality-typed term from the SAWCore
Prelude module to a Simpset.

Finally, it’s possible to construct a theorem from an arbitrary SAWCore expression (rather than a Cryptol
expression), using the core_axiom function.

• core_axiom : String -> Theorem creates a Theorem from a String in SAWCore syntax. Any
Theorem introduced by this function is assumed to be correct, so use it with caution.

Folding and Unfolding
A SAWCore term can be given a name using the define function, and is then by default printed as that
name alone. A named subterm can be “unfolded” so that the original definition appears again.

• define : String -> Term -> TopLevel Term

• unfold_term : [String] -> Term -> Term

For example:

sawscript > let t = {{ 0x22 }}
sawscript > print_term t
Cryptol . ecNumber ( Cryptol .TCNum 34) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))
sawscript > t' <- define "t" t
sawscript > print_term t'
t
sawscript > let t'' = unfold_term ["t"] t'
sawscript > print_term t''
Cryptol . ecNumber ( Cryptol .TCNum 34) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))

This process of folding and unfolding is useful both to make large terms easier for humans to work with
and to make automated proofs more tractable. We’ll describe the latter in more detail when we discuss
interacting with external provers.

In some cases, folding happens automatically when constructing Cryptol expressions. Consider the following
example:

sawscript > let t = {{ 0x22 }}
sawscript > print_term t
Cryptol . ecNumber ( Cryptol .TCNum 34) ( Prelude .Vec 8 Prelude .Bool)

( Cryptol . PLiteralSeqBool ( Cryptol .TCNum 8))
sawscript > let {{ t' = 0x22 }}
sawscript > print_term {{ t' }}
t'

This illustrates that a bare expression in Cryptol braces gets translated directly to a SAWCore term. However,
a Cryptol definition gets translated into a folded SAWCore term. In addition, because the second definition
of t occurs at the Cryptol level, rather than the SAWScript level, it is visible only inside Cryptol braces.
Definitions imported from Cryptol source files are also initially folded and can be unfolded as needed.
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Other Built-in Transformation and Inspection Functions
In addition to the Term transformation functions described so far, a variety of others also exist.

• beta_reduce_term : Term -> Term takes any sub-expression of the form (\x -> t)v in the given
Term and replaces it with a transformed version of t in which all instances of x are replaced by v.

• replace : Term -> Term -> Term -> TopLevel Term replaces arbitrary subterms. A call to
replace x y t replaces any instance of x inside t with y.

Assessing the size of a term can be particularly useful during benchmarking. SAWScript provides two
mechanisms for this.

• term_size : Term -> Int calculates the number of nodes in the Directed Acyclic Graph (DAG)
representation of a Term used internally by SAW. This is the most appropriate way of determining the
resource use of a particular term.

• term_tree_size : Term -> Int calculates how large a Term would be if it were represented by a tree
instead of a DAG. This can, in general, be much, much larger than the number returned by term_size,
and serves primarily as a way of assessing, for a specific term, how much benefit there is to the term
sharing used by the DAG representation.

Finally, there are a few commands related to the internal SAWCore type of a Term.

• check_term : Term -> TopLevel () checks that the internal structure of a Term is well-formed and
that it passes all of the rules of the SAWCore type checker.

• type : Term -> Type returns the type of a particular Term, which can then be used to, for example,
construct a new fresh variable with fresh_symbolic.

Loading and Storing Terms
Most frequently, Term values in SAWScript come from Cryptol, JVM, or LLVM programs, or some transfor-
mation thereof. However, it is also possible to obtain them from various other sources.

• parse_core : String -> Term parses a String containing a term in SAWCore syntax, returning a
Term.

• read_core : String -> TopLevel Term is like parse_core, but obtains the text from the given
file and expects it to be in the simpler SAWCore external representation format, rather than the
human-readable syntax shown so far.

• read_aig : String -> TopLevel Term returns a Term representation of an And-Inverter-Graph (AIG)
file in AIGER format.

• read_bytes : String -> TopLevel Term reads a constant sequence of bytes from a file and represents
it as a Term. Its result will always have Cryptol type [n][8] for some n.

It is also possible to write Term values into files in various formats, including: AIGER (write_aig), CNF
(write_cnf), SAWCore external representation (write_core), and SMT-Lib version 2 (write_smtlib2).

• write_aig : String -> Term -> TopLevel ()

• write_cnf : String -> Term -> TopLevel ()

• write_core : String -> Term -> TopLevel ()

• write_smtlib2 : String -> Term -> TopLevel ()
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Proofs about Terms
The goal of SAW is to facilitate proofs about the behavior of programs. It may be useful to prove some small
fact to use as a rewrite rule in later proofs, but ultimately these rewrite rules come together into a proof of
some higher-level property about a software system.

Whether proving small lemmas (in the form of rewrite rules) or a top-level theorem, the process builds on the
idea of a proof script that is run by one of the top level proof commands.

• prove_print : ProofScript SatResult -> Term -> TopLevel Theorem takes a proof script (which
we’ll describe next) and a Term. The Term should be of function type with a return value of Bool (Bit
at the Cryptol level). It will then use the proof script to attempt to show that the Term returns True
for all possible inputs. If it is successful, it will print Valid and return a Theorem. If not, it will abort.

• sat_print : ProofScript SatResult -> Term -> TopLevel () is similar except that it looks for
a single value for which the Term evaluates to True and prints out that value, returning nothing.

• prove_core : ProofScript SatResult -> String -> TopLevel Theorem proves and returns a
Theorem from a string in SAWCore syntax.

Automated Tactics
The simplest proof scripts just specify the automated prover to use. The ProofScript values abc and z3
select the ABC and Z3 theorem provers, respectively, and are typically good choices.

For example, combining prove_print with abc:

sawscript > t <- prove_print abc {{ \(x:[8]) -> x+x == x*2 }}
Valid
sawscript > t
Theorem (let { x@1 = Prelude .Vec 8 Prelude .Bool

x@2 = Cryptol .TCNum 8
x@3 = Cryptol . PArithSeqBool x@2

}
in (x : x@1)

-> Prelude . EqTrue
( Cryptol .ecEq x@1 ( Cryptol . PCmpSeqBool x@2)

( Cryptol . ecPlus x@1 x@3 x x)
( Cryptol .ecMul x@1 x@3 x

( Cryptol . ecNumber ( Cryptol .TCNum 2) x@1
( Cryptol . PLiteralSeqBool x@2)))))

Similarly, sat_print will show that the function returns True for one specific input (which it should, since
we already know it returns True for all inputs):

sawscript > sat_print abc {{ \(x:[8]) -> x+x == x*2 }}
Sat: [x = 0]

In addition to these, the boolector, cvc4, mathsat, and yices provers are available. The internal decision
procedure rme, short for Reed-Muller Expansion, is an automated prover that works particularly well on the
Galois field operations that show up, for example, in AES.

In more complex cases, some pre-processing can be helpful or necessary before handing the problem off to an
automated prover. The pre-processing can involve rewriting, beta reduction, unfolding, the use of provers
that require slightly more configuration, or the use of provers that do very little real work.
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Proof Script Diagnostics
During development of a proof, it can be useful to print various information about the current goal. The
following tactics are useful in that context.

• print_goal : ProofScript () prints the entire goal in SAWCore syntax.

• print_goal_consts : ProofScript () takes an integer argument, n, and prints the goal up to depth
n. Any elided subterms are printed with a ... notation.

• print_goal_depth : Int -> ProofScript () prints a list of the names of subterms that are folded
in the current goal.

• print_goal_size : ProofScript () prints the number of nodes in the DAG representation of the
goal.

Rewriting in Proof Scripts
One of the key techniques available for completing proofs in SAWScript is the use of rewriting or transformation.
The following commands support this approach.

• simplify : Simpset -> ProofScript () works just like rewrite, except that it works in a
ProofScript context and implicitly transforms the current (unnamed) goal rather than taking a Term
as a parameter.

• goal_eval : ProofScript () will evaluate the current proof goal to a first-order combination of
primitives.

• goal_eval_unint : [String] -> ProofScript () works like goal_eval but avoids expanding or
simplifying the given names.

Other Transformations
Some useful transformations are not easily specified using equality statements, and instead have special
tactics.

• beta_reduce_goal : ProofScript () works like beta_reduce_term but on the current goal. It takes
any sub-expression of the form (\x -> t)v and replaces it with a transformed version of t in which all
instances of x are replaced by v.

• unfolding : [String] -> ProofScript () works like unfold_term but on the current goal.

Using unfolding is mostly valuable for proofs based entirely on rewriting, since the default behavior for
automated provers is to unfold everything before sending a goal to a prover. However, with some provers it is
possible to indicate that specific named subterms should be represented as uninterpreted functions.

• unint_cvc4 : [String] -> ProofScript SatResult

• unint_yices : [String] -> ProofScript SatResult

• unint_z3 : [String] -> ProofScript SatResult

The list of String arguments in these cases indicates the names of the subterms to leave folded, and therefore
present as uninterpreted functions to the prover. To determine which folded constants appear in a goal, use
the print_goal_consts function described above.

Ultimately, we plan to implement a more generic tactic that leaves certain constants uninterpreted in whatever
prover is ultimately used (provided that uninterpreted functions are expressible in the prover).
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Other External Provers
In addition to the built-in automated provers already discussed, SAW supports more generic interfaces to
other arbitrary theorem provers supporting specific interfaces.

• external_aig_solver : String -> [String] -> ProofScript SatResult supports theorem
provers that can take input as a single-output AIGER file. The first argument is the name of the
executable to run. The second argument is the list of command-line parameters to pass to that
executable. Any element of this list equal to "%f" will be replaced with the name of the temporary
AIGER file generated for the proof goal. The output from the solver is expected to be in DIMACS
solution format.

• external_cnf_solver : String -> [String] -> ProofScript SatResult works similarly but for
SAT solvers that take input in DIMACS CNF format and produce output in DIMACS solution format.

Offline Provers
For provers that must be invoked in more complex ways, or to defer proof until a later time, there are
functions to write the current goal to a file in various formats, and then assume that the goal is valid through
the rest of the script.

• offline_aig : String -> ProofScript SatResult

• offline_cnf : String -> ProofScript SatResult

• offline_extcore : String -> ProofScript SatResult

• offline_smtlib2 : String -> ProofScript SatResult

• offline_unint_smtlib2 : [String] -> String -> ProofScript SatResult

These support the AIGER, DIMACS CNF, shared SAWCore, and SMT-Lib v2 formats, respectively. The
shared representation for SAWCore is described in the saw-script repository. The offline_unint_smtlib2
command represents the folded subterms listed in its first argument as uninterpreted functions.

Finishing Proofs without External Solvers
Some proofs can be completed using unsound placeholders, or using techniques that do not require significant
computation.

• assume_unsat : ProofScript SatResult indicates that the current goal should be assumed to be
unsatisfiable. At the moment, crucible_jvm_verify and crucible_llvm_verify (described below)
run their proofs in the a satisfiability-checking (negated) context, so assume_unsat indicates that the
property being checked should be assumed to be true. This is likely to change in the future.

• assume_valid : ProofScript ProofResult indicates that the current goal should be assumed to be
valid.

• quickcheck : Int -> ProofScript SatResult runs the goal on the given number of random inputs,
and succeeds if the result of evaluation is always True. This is unsound, but can be helpful during
proof development, or as a way to provide some evidence for the validity of a specification believed to
be true but difficult or infeasible to prove.

• trivial : ProofScript SatResult states that the current goal should be trivially true (i.e., the
constant True or a function that immediately returns True). It fails if that is not the case.
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Multiple Goals
The proof scripts shown so far all have a single implicit goal. As in many other interactive provers, however,
SAWScript proofs can have multiple goals. The following commands can introduce or work with multiple
goals.

• goal_apply : Theorem -> ProofScript () will apply a given introduction rule to the current goal.
This will result in zero or more new subgoals.

• goal_assume : ProofScript Theorem will convert the first hypothesis in the current proof goal into
a local Theorem

• goal_insert : Theorem -> ProofScript () will insert a given Theorem as a new hypothesis in the
current proof goal.

• goal_intro : String -> ProofScript Term will introduce a quantified variable in the current proof
goal, returning the variable as a Term.

• goal_when : String -> ProofScript ()-> ProofScript () will run the given proof script only
when the goal name contains the given string.

• split_goal : ProofScript () will split a goal of the form Prelude.and prop1 prop2 into two
separate goals prop1 and prop2.

Proof Failure and Satisfying Assignments
The prove_print and sat_print commands print out their essential results (potentially returning a Theorem
in the case of prove_print). In some cases, though, one may want to act programmatically on the result of
a proof rather than displaying it.

The prove and sat commands allow this sort of programmatic analysis of proof results. To allow this, they
use two types we haven’t mentioned yet: ProofResult and SatResult. These are different from the other
types in SAWScript because they encode the possibility of two outcomes. In the case of ProofResult, a
statement may be valid or there may be a counter-example. In the case of SatResult, there may be a
satisfying assignment or the statement may be unsatisfiable.

• prove : ProofScript SatResult -> Term -> TopLevel ProofResult

• sat : ProofScript SatResult -> Term -> TopLevel SatResult

To operate on these new types, SAWScript includes a pair of functions:

• caseProofResult : {b} ProofResult -> b -> (Term -> b)-> b takes a ProofResult, a value to
return in the case that the statement is valid, and a function to run on the counter-example, if there is
one.

• caseSatResult : {b} SatResult -> b -> (Term -> b)-> b has the same shape: it returns its first
argument if the result represents an unsatisfiable statement, or its second argument applied to a
satisfying assignment if it finds one.

AIG Values and Proofs
Most SAWScript programs operate on Term values, and in most cases this is the appropriate representation.
It is possible, however, to represent the same function that a Term may represent using a different data
structure: an And-Inverter-Graph (AIG). An AIG is a representation of a Boolean function as a circuit
composed entirely of AND gates and inverters. Hardware synthesis and verification tools, including the ABC
tool that SAW has built in, can do efficient verification and particularly equivalence checking on AIGs.

To take advantage of this capability, a handful of built-in commands can operate on AIGs.
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• bitblast : Term -> TopLevel AIG represents a Term as an AIG by “blasting” all of its primitive
operations (things like bit-vector addition) down to the level of individual bits.

• cec : AIG -> AIG -> TopLevel ProofResult compares two AIG values, returning a ProofResult
representing whether the two are equivalent.

• load_aig : String -> TopLevel AIG loads an AIG from an external AIGER file.

• save_aig : String -> AIG -> TopLevel () saves an AIG to an external AIGER file.

• save_aig_as_cnf : String -> AIG -> TopLevel () writes an AIG out in CNF format for input into
a standard SAT solver.

Symbolic Execution
Analysis of Java and LLVM within SAWScript relies heavily on symbolic execution, so some background on
how this process works can help with understanding the behavior of the available built-in functions.

At the most abstract level, symbolic execution works like normal program execution except that the values of
all variables within the program can be arbitrary expressions, potentially containing free variables, rather than
concrete values. Therefore, each symbolic execution corresponds to some set of possible concrete executions.

As a concrete example, consider the following C program that returns the maximum of two values:

unsigned int max( unsigned int x, unsigned int y) {
if (y > x) {

return y;
} else {

return x;
}

}

If you call this function with two concrete inputs, like this:

int r = max (5, 4);

then it will assign the value 5 to r. However, we can also consider what it will do for arbitrary inputs.
Consider the following example:

int r = max(a, b);

where a and b are variables with unknown values. It is still possible to describe the result of the max function
in terms of a and b. The following expression describes the value of r:

ite (b > a) b a

where ite is the “if-then-else” mathematical function, which based on the value of the first argument
returns either the second or third. One subtlety of constructing this expression, however, is the treatment of
conditionals in the original program. For any concrete values of a and b, only one branch of the if statement
will execute. During symbolic execution, on the other hand, it is necessary to execute both branches, track
two different program states (each composed of symbolic values), and then merge those states after executing
the if statement. This merging process takes into account the original branch condition and introduces the
ite expression.

A symbolic execution system, then, is very similar to an interpreter that has a different notion of what
constitutes a value and executes all paths through the program instead of just one. Therefore, the execution
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process is similar to that of a normal interpreter, and the process of generating a model for a piece of code is
similar to building a test harness for that same code.

More specifically, the setup process for a test harness typically takes the following form:

• Initialize or allocate any resources needed by the code. For Java and LLVM code, this typically means
allocating memory and setting the initial values of variables.

• Execute the code.

• Check the desired properties of the system state after the code completes.

Accordingly, three pieces of information are particularly relevant to the symbolic execution process, and are
therefore needed as input to the symbolic execution system:

• The initial (potentially symbolic) state of the system.

• The code to execute.

• The final state of the system, and which parts of it are relevant to the properties being tested.

In the following sections, we describe how the Java and LLVM analysis primitives work in the context of
these key concepts. We start with the simplest situation, in which the structure of the initial and final states
can be directly inferred, and move on to more complex cases that require more information from the user.

Symbolic Termination
Above we described the process of executing multiple branches and merging the results when encountering a
conditional statement in the program. When a program contains loops, the branch that chooses to continue
or terminate a loop could go either way. Therefore, without a bit more information, the most obvious
implementation of symbolic execution would never terminate when executing programs that contain loops.

The solution to this problem is to analyze the branch condition whenever considering multiple branches. If
the condition for one branch can never be true in the context of the current symbolic state, there is no reason
to execute that branch, and skipping it can make it possible for symbolic execution to terminate.

Directly comparing the branch condition to a constant can sometimes be enough to ensure termination. For
example, in simple, bounded loops like the following, comparison with a constant is sufficient.

for (int i = 0; i < 10; i++) {
// do something

}

In this case, the value of i is always concrete, and will eventually reach the value 10, at which point the
branch corresponding to continuing the loop will be infeasible.

As a more complex example, consider the following function:

uint8_t f( uint8_t i) {
int done = 0;
while (! done) {

if (i % 8 == 0) done = 1;
i += 5;

}
return i;

}
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The loop in this function can only be determined to symbolically terminate if the analysis takes into account
algebraic rules about common multiples. Similarly, it can be difficult to prove that a base case is eventually
reached for all inputs to a recursive program.

In this particular case, however, the code is guaranteed to terminate after a fixed number of iterations (where
the number of possible iterations is a function of the number of bits in the integers being used). To show
that the last iteration is in fact the last possible one, it’s necessary to do more than just compare the branch
condition with a constant. Instead, we can use the same proof tools that we use to ultimately analyze the
generated models to, early in the process, prove that certain branch conditions can never be true (i.e., are
unsatisfiable).

Normally, most of the Java and LLVM analysis commands simply compare branch conditions to the constant
True or False to determine whether a branch may be feasible. However, each form of analysis allows branch
satisfiability checking to be turned on if needed, in which case functions like f above will terminate.

Next, we examine the details of the specific commands available to analyze JVM and LLVM programs.

Loading Code
The first step in analyzing any code is to load it into the system.

To load LLVM code, simply provide the location of a valid bitcode file to the llvm_load_module function.

• llvm_load_module : String -> TopLevel LLVMModule

The resulting LLVMModule can be passed into the various functions described below to perform analysis of
specific LLVM functions.

The LLVM bitcode parser should generally work with LLVM versions between 3.5 and 7.0, though it may be
incomplete for some versions. Debug metadata has changed somewhat throughout that version range, so is
the most likely case of incompleteness. We aim to support every version after 3.5, however, so report any
parsing failures as on GitHub.

Loading Java code is slightly more complex, because of the more structured nature of Java packages. First,
when running saw, two flags control where to look for classes. The -j flag takes the name of a JAR file as an
argument and adds the contents of that file to the class database. The -c flag takes the name of a directory
as an argument and adds all class files found in that directory (and its subdirectories) to the class database.
By default, the current directory is included in the class path. However, the Java runtime and standard
library (usually called rt.jar) is generally required for any non-trivial Java code, and can be installed in a
wide variety of different locations. Therefore, for most Java analysis, you must provide the -j argument or
the SAW_JDK_JAR environment variable to specify where to find this file.

Once the class path is configured, you can pass the name of a class to the java_load_class function.

• java_load_class : String -> TopLevel JavaClass

The resulting JavaClass can be passed into the various functions described below to perform analysis of
specific Java methods.

Java class files from any JDK newer than version 6 should work. However, JDK version 9 and newer do not
contain a JAR file containing the standard libraries, and therefore do not currently work with SAW. We are
investigating the best way to resolve this issue.

Direct Extraction
In the case of the max function described earlier, the relevant inputs and outputs are immediately apparent.
The function takes two integer arguments, always uses both of them, and returns a single integer value,
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making no other changes to the program state.

In cases like this, a direct translation is possible, given only an identification of which code to execute. Two
functions exist to handle such simple code. The first, for LLVM is the more stable of the two:

• crucible_llvm_extract : LLVMModule -> String -> TopLevel Term

A similar function exists for Java, but is more experimental.

• crucible_java_extract : JavaClass -> String -> TopLevel Term

Because of its lack of maturity, it (and later Java-related commands) must be enabled by running the
enable_experimental command beforehand.

• enable_experimental : TopLevel ()

The structure of these two extraction functions is essentially identical. The first argument describes where to
look for code (in either a Java class or an LLVM module, loaded as described in the previous section). The
second argument is the name of the method or function to extract.

When the extraction functions complete, they return a Term corresponding to the value returned by the
function or method as a function of its arguments.

These functions currently work only for code that takes some fixed number of integral parameters, returns
an integral result, and does not access any dynamically-allocated memory (although temporary memory
allocated during execution is allowed).

Creating Symbolic Variables
The direct extraction process just discussed automatically introduces symbolic variables and then abstracts
over them, yielding a SAWScript Term that reflects the semantics of the original Java or LLVM code. For
simple functions, this is often the most convenient interface. For more complex code, however, it can be
necessary (or more natural) to specifically introduce fresh variables and indicate what portions of the program
state they correspond to.

• fresh_symbolic : String -> Type -> TopLevel Term is responsible for creating new variables in
this context. The first argument is a name used for pretty-printing of terms and counter-examples.
In many cases it makes sense for this to be the same as the name used within SAWScript, as in the
following:

x <- fresh_symbolic "x" ty;

However, using the same name is not required.

The second argument to fresh_symbolic is the type of the fresh variable. Ultimately, this will be a SAWCore
type; however, it is usually convenient to specify it using Cryptol syntax with the type quoting brackets {|
and |}. For example, creating a 32-bit integer, as might be used to represent a Java int or an LLVM i32,
can be done as follows:

x <- fresh_symbolic "x" {| [32] |};

Although symbolic execution works best on symbolic variables, which are “unbound” or “free”, most of the
proof infrastructure within SAW uses variables that are bound by an enclosing lambda expression. Given a
Term with free symbolic variables, we can construct a lambda term that binds them in several ways.

• abstract_symbolic : Term -> Term finds all symbolic variables in the Term and constructs a lambda
expression binding each one, in some order. The result is a function of some number of arguments, one
for each symbolic variable. It is the simplest but least flexible way to bind symbolic variables.
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sawscript > x <- fresh_symbolic "x" {| [8] |}
sawscript > let t = {{ x + x }}
sawscript > print_term t
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8))

x
x

sawscript > let f = abstract_symbolic t
sawscript > print_term f
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in \(x : x@1) ->

Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8)) x x

If there are multiple symbolic variables in the Term passed to abstract_symbolic, the ordering of parameters
can be hard to predict. In some cases (such as when a proof is the immediate next step, and it’s expected to
succeed) the order isn’t important. In others, it’s nice to have more control over the order.

• lambda : Term -> Term -> Term is the building block for controlled binding. It takes two terms: the
one to transform, and the portion of the term to abstract over. Generally, the first Term is one obtained
from fresh_symbolic and the second is a Term that would be passed to abstract_symbolic.

sawscript > let f = lambda x t
sawscript > print_term f
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in \(x : x@1) ->

Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8)) x x

• lambdas : [Term] -> Term -> Term allows you to list the order in which symbolic variables should
be bound. Consider, for example, a Term which adds two symbolic variables:

sawscript > x1 <- fresh_symbolic "x1" {| [8] |}
sawscript > x2 <- fresh_symbolic "x2" {| [8] |}
sawscript > let t = {{ x1 + x2 }}
sawscript > print_term t
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8))

x1
x2

We can turn t into a function that takes x1 followed by x2:

sawscript > let f1 = lambdas [x1 , x2] t
sawscript > print_term f1
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in \(x1 : x@1) ->

\(x2 : x@1) ->
Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8)) x1

x2
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Or we can turn t into a function that takes x2 followed by x1:

sawscript > let f1 = lambdas [x2 , x1] t
sawscript > print_term f1
let { x@1 = Prelude .Vec 8 Prelude .Bool

}
in \(x2 : x@1) ->

\(x1 : x@1) ->
Cryptol . ecPlus x@1 ( Cryptol . PArithSeqBool ( Cryptol .TCNum 8)) x1

x2

Specification-Based Verification
The built-in functions described so far work by extracting models of code that can then be used for a variety
of purposes, including proofs about the properties of the code.

When the goal is to prove equivalence between some LLVM or Java code and a specification, however, a more
declarative approach is sometimes convenient. The following sections describe an approach that combines
model extraction and verification with respect to a specification. A verified specification can then be used as
input to future verifications, allowing the proof process to be decomposed.

Running a Verification
Verification of LLVM is controlled by the crucible_llvm_verify command.

crucible_llvm_verify :
LLVMModule ->
String ->
[ CrucibleMethodSpec ] ->
Bool ->
CrucibleSetup () ->
ProofScript SatResult ->
TopLevel CrucibleMethodSpec

The first two arguments specify the module and function name to verify, as with llvm_verify. The third
argument specifies the list of already-verified specifications to use for compositional verification (described
later; use [] for now). The fourth argument specifies whether to do path satisfiability checking, and the fifth
gives the specification of the function to be verified. Finally, the last argument gives the proof script to use
for verification. The result is a proved specification that can be used to simplify verification of functions that
call this one.

A similar command for JVM programs is available if enable_experimental has been run.

crucible_jvm_verify :
JavaClass ->
String ->
[ JVMMethodSpec ] ->
Bool ->
JVMSetup () ->
ProofScript SatResult ->
TopLevel JVMMethodSpec

Now we describe how to construct a value of type CrucibleSetup () (or JVMSetup ()).
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Structure of a Specification
A specifications for Crucible consists of three logical components:

• A specification of the initial state before execution of the function.

• A description of how to call the function within that state.

• A specification of the expected final value of the program state.

These three portions of the specification are written in sequence within a do block of CrucibleSetup (or
JVMSetup) type. The command crucible_execute_func (or jvm_execute_func) separates the specification
of the initial state from the specification of the final state, and specifies the arguments to the function in
terms of the initial state. Most of the commands available for state description will work either before or
after crucible_execute_func, though with slightly different meaning, as described below.

Creating Fresh Variables
In any case where you want to prove a property of a function for an entire class of inputs (perhaps all inputs)
rather than concrete values, the initial values of at least some elements of the program state must contain
fresh variables. These are created in a specification with the crucible_fresh_var and jvm_fresh_var
commands rather than fresh_symbolic.

• crucible_fresh_var : String -> LLVMType -> CrucibleSetup Term

• jvm_fresh_var : String -> JavaType -> JVMSetup Term

The first parameter to both functions is a name, used only for presentation. It’s possible (though not
recommended) to create multiple variables with the same name, but SAW will distinguish between them
internally. The second parameter is the LLVM (or Java) type of the variable. The resulting Term can be used
in various subsequent commands.

LLVM types are built with this set of functions:

• llvm_int : Int -> LLVMType
• llvm_array : Int -> LLVMType -> LLVMType
• llvm_struct : String -> LLVMType
• llvm_float : LLVMType
• llvm_double : LLVMType

Java types are built up using the following functions:

• java_bool : JavaType
• java_byte : JavaType
• java_char : JavaType
• java_short : JavaType
• java_int : JavaType
• java_long : JavaType
• java_float : JavaType
• java_double : JavaType
• java_class : String -> JavaType
• java_array : Int -> JavaType -> JavaType

Most of these types are straightforward mappings to the standard LLVM and Java types. The one key
difference is that arrays must have a fixed, concrete size. Therefore, all analysis results are valid only under
the assumption that any arrays have the specific size indicated, and may not hold for other sizes. The
llvm_int function also takes an Int parameter indicating the variable’s bit width.

LLVM types can also be specified in LLVM syntax directly by using the llvm_type function.
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• llvm_type : String -> LLVMType

For example, llvm_type "i32" yields the same result as llvm_int 32.

The most common use for creating fresh variables is to state that a particular function should have the
specified behaviour for arbitrary initial values of the variables in question. Sometimes, however, it can
be useful to specify that a function returns (or stores, more about this later) an arbitrary value, without
specifying what that value should be. To express such a pattern, you can also run crucible_fresh_var
from the post state (i.e., after crucible_execute_func).

The SetupValue and JVMValue Types
Many specifications require reasoning about both pure values and about the configuration of the heap. The
SetupValue type corresponds to values that can occur during symbolic execution, which includes both Term
values, pointers, and composite types consisting of either of these (both structures and arrays).

The crucible_term and jvm_term functions create a SetupValue or JVMValue from a Term:

• crucible_term : Term -> SetupValue
• jvm_term : Term -> JVMValue

Executing
Once the initial state has been configured, the crucible_execute_func command specifies the parameters
of the function being analyzed in terms of the state elements already configured.

• crucible_execute_func : [SetupValue] -> CrucibleSetup ()

Return Values
To specify the value that should be returned by the function being verified use the crucible_return or
jvm_return command.

• crucible_return : SetupValue -> CrucibleSetup ()
• jvm_return : JVMValue -> JVMSetup ()

A First Simple Example
The commands introuduced so far are sufficient to verify simple programs that do not use pointers (or that
use them only internally). Consider, for instance the C program that adds its two arguments together:

# include <stdint .h>
uint32_t add( uint32_t x, uint32_t y) {

return x + y;
}

We can specify this function’s expected behavior as follows:

let add_setup = do {
x <- crucible_fresh_var "x" ( llvm_int 32);
y <- crucible_fresh_var "y" ( llvm_int 32);
crucible_execute_func [ crucible_term x, crucible_term y];
crucible_return ( crucible_term {{ x + y : [32] }});

};

We can then compile the C file add.c into the bitcode file add.bc and verify it with ABC:
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m <- llvm_load_module "add.bc";
add_ms <- crucible_llvm_verify m "add" [] false add_setup abc;

Compositional Verification
The primary advantage of the specification-based approach to verification is that it allows for compositional
reasoning. That is, when proving properties of a given method or function, we can make use of properties we
have already proved about its callees rather than analyzing them anew. This enables us to reason about
much larger and more complex systems than otherwise possible.

The crucible_llvm_verify and crucible_jvm_verify functions return values of type CrucibleMethodSpec
and JVMMethodSpec, respectively. These values are opaque objects that internally contain both the

information provided in the associated JVMSetup or CrucibleSetup blocks and the results of the verification
process.

Any of these MethodSpec objects can be passed in via the third argument of the ..._verify functions.
For any function or method specified by one of these parameters, the simulator will not follow calls to the
associated target. Instead, it will perform the following steps:

• Check that all crucible_points_to and crucible_precond statements (or the corresponding JVM
statements) in the specification are satisfied.

• Update the simulator state and optionally construct a return value as described in the specification.

More concretely, building on the previous example, say we have a doubling function written in terms of add:
uint32_t dbl( uint32_t x) {

return add(x, x);
}

It has a similar specification to add:
let dbl_setup = do {

x <- crucible_fresh_var "x" ( llvm_int 32);
crucible_execute_func [ crucible_term x];
crucible_return ( crucible_term {{ x + x : [32] }});

};

And we can verify it using what we’ve already proved about add:
crucible_llvm_verify m "dbl" [ add_ms ] false dbl_setup abc;

In this case, doing the verification compositionally doesn’t save computational effort, since the functions are
so simple, but it illustrates the approach.

Specifying Heap Layout
Most functions that operate on pointers expect that certain pointers point to allocated memory before they
are called. The crucible_alloc command allows you to specify that a function expects a particular pointer
to refer to an allocated region appropriate for a specific type.

• crucible_alloc : LLVMType -> CrucibleSetup SetupValue

This command returns a SetupValue consisting of a pointer to the allocated space, which can be used
wherever a pointer-valued SetupValue can be used.

In the initial state, crucible_alloc specifies that the function expects a pointer to allocated space to exist.
In the final state, it specifies that the function itself performs an allocation.
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When using the experimental Java implementation, separate functions exist for specifying that arrays or
objects are allocated:

• jvm_alloc_array : Int -> JavaType -> JVMSetup JVMValue specifies an array of the given con-
crete size, with elements of the given type.

• jvm_alloc_object : String -> JVMSetup JVMValue specifies an object of the given class name.

In LLVM, it’s also possible to construct fresh pointers that do not point to allocated memory (which can be
useful for functions that manipulate pointers but not the values they point to):

• crucible_fresh_pointer : LLVMType -> CrucibleSetup SetupValue

The NULL pointer is called crucible_null in LLVM and jvm_null in JVM:

• crucible_null : SetupValue
• jvm_null : JVMValue

One final, slightly more obscure command is the following:

• crucible_alloc_readonly : LLVMType -> CrucibleSetup SetupValue

This works like crucible_alloc except that writes to the space allocated are forbidden. This can be useful
for specifying that a function should take as an argument a pointer to allocated space that it will not
modify. Unlike crucible_alloc, regions allocated with crucible_alloc_readonly are allowed to alias
other read-only regions.

Specifying Heap Values
Pointers returned by crucible_alloc don’t, initially, point to anything. So if you pass such a pointer
directly into a function that tried to dereference it, symbolic execution will fail with a message about an
invalid load. For some functions, such as those that are intended to initialize data structures (writing to the
memory pointed to, but never reading from it), this sort of uninitialized memory is appropriate. In most
cases, however, it’s more useful to state that a pointer points to some specific (usually symbolic) value, which
you can do with the crucible_points_to command.

• crucible_points_to : SetupValue -> SetupValue -> CrucibleSetup () takes two SetupValue
arguments, the first of which must be a pointer, and states that the memory specified by that pointer
should contain the value given in the second argument (which may be any type of SetupValue).

When used in the final state, crucible_points_to specifies that the given pointer should point to the given
value when the function finishes.

Occasionally, because C programs frequently reinterpret memory of one type as another through casts, it can
be useful to specify that a pointer points to a value that does not agree with its static type.

• crucible_points_to_untyped : SetupValue -> SetupValue -> CrucibleSetup () works like
crucible_points_to but omits type checking. Rather than omitting type checking across the board,
we introducted this additional function to make it clear when a type reinterpretation is intentional.

Working with Compound Types
The commands mentioned so far give us no way to specify the values of compound types (arrays or structs).
Compound values can be dealt with either piecewise or in their entirety.

• crucible_elem : SetupValue -> Int -> SetupValue yields a pointer to an internal element of a
compound value. For arrays, the Int parameter is the array index. For struct values, it is the field
index.
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• crucible_field : SetupValue -> String -> SetupValue yields a pointer to a particular named
struct field, if debugging information is available in the bitcode

Either of these functions can be used with crucible_points_to to specify the value of a particular array
element or struct field. Sometimes, however, it is more convenient to specify all array elements or field
values at onces. The crucible_array and crucible_struct functions construct compound values from lists
of element values.

• crucible_array : [SetupValue] -> SetupValue
• crucible_struct : [SetupValue] -> SetupValue

To specify an array or struct in which each element or field is symbolic, it would be possible, but tedious,
to use a large combination of crucible_fresh_var and crucible_elem or crucible_field commands.
However, the following function can simplify the common case where you want every element or field to have
a fresh value.

• crucible_fresh_expanded_val : LLVMType -> CrucibleSetup SetupValue

The crucible_struct function normally creates a struct whose layout obeys the alignment rules of the
platform specified in the LLVM file being analyzed. Structs in LLVM can explicitly be “packed”, however, so
that every field immediately follows the previous in memory. The following command will create values of
such types:

• crucible_packed_struct : [SetupValue] -> SetupValue

In the experimental Java verification implementation, the following functions can be used to state the
equivalent of a combination of crucible_points_to and either crucible_elem or crucible_field.

• jvm_elem_is : JVMValue -> Int -> JVMValue -> JVMSetup () specifies the value of an array ele-
ment.

• jvm_field_is : JVMValue -> String -> JVMValue -> JVMSetup () specifies the name of an object
field.

Global variables
Pointers to global variables or functions can be accessed with crucible_global:

• crucible_global : String -> SetupValue

Like the pointers returned by crucible_alloc, however, these aren’t initialized at the beginning of symbolic
– setting global variables may be unsound in the presence of compositional verification.

To understand the issues surrounding global variables, consider the following C code:

int x = 0;

int f(int y) {
x = x + 1;
return x + y;

}

int g(int z) {
x = x + 2;
return x + z;

}

One might initially write the following specifications for f and g:
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m <- llvm_load_module "./ test.bc";

f_spec <- crucible_llvm_verify m "f" [] true (do {
y <- crucible_fresh_var "y" ( llvm_int 32);
crucible_execute_func [ crucible_term y];
crucible_return ( crucible_term {{ 1 + y : [32] }});

}) abc;

g_spec <- crucible_llvm_verify m "g" [] true (do {
z <- crucible_fresh_var "z" ( llvm_int 32);
crucible_execute_func [ crucible_term z];
crucible_return ( crucible_term {{ 2 + z : [32] }});

}) abc;

If globals were always initialized at the beginning of verification, both of these specs would be provable.
However, the results wouldn’t truly be compositional. For instance, it’s not the case that f(g(z))== z + 3
for all z, because both f and g modify the global variable x in a way that crosses function boundaries.

To deal with this, we can use the following function:

• crucible_global_initializer : String -> SetupValue returns the value of the constant global
initializer for the named global variable.

Given this function, the specifications for f and g can make this reliance on the initial value of x explicit:

m <- llvm_load_module "./ test.bc";

let init_global name = do {
crucible_points_to ( crucible_global name)

( crucible_global_initializer name);
};

f_spec <- crucible_llvm_verify m "f" [] true (do {
y <- crucible_fresh_var "y" ( llvm_int 32);
init_global "x";
crucible_execute_func [ crucible_term y];
crucible_return ( crucible_term {{ 1 + y : [32] }});

}) abc;

which initializes x to whatever it is initialized to in the C code at the beginning of verification. This
specification is now safe for compositional verification: SAW won’t use the specification f_spec unless it can
determine that x still has its initial value at the point of a call to f.

Preconditions and Postconditions
Sometimes a function is only well-defined under certain conditions, or sometimes you may be interested
in certain initial conditions that give rise to specific final conditions. For these cases, you can specify an
arbitrary predicate as a precondition or post-condition, using any values in scope at the time.

• crucible_precond : Term -> CrucibleSetup ()
• crucible_postcond : Term -> CrucibleSetup ()
• jvm_precond : Term -> JVMSetup ()
• jvm_postcond : Term -> JVMSetup ()
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These two commands take Term arguments, and therefore cannot describe the values of pointers. The
crucible_equal command states that two SetupValues should be equal, and can be used in either the initial
or the final state.

• crucible_equal : SetupValue -> SetupValue -> CrucibleSetup ()

The use of crucible_equal can also sometimes lead to more efficient symbolic execution when the predicate
of interest is an equality.

Assuming specifications
Normally, a MethodSpec is the result of both simulation and proof of the target code. However, in some
cases, it can be useful to use a MethodSpec to specify some code that either doesn’t exist or is hard to prove.
The previously-mentioned assume_unsat tactic omits proof but does not prevent simulation of the function.
To skip simulation altogether, one can use:

crucible_llvm_unsafe_assume_spec :
LLVMModule -> String -> CrucibleSetup () -> TopLevel

CrucibleMethodSpec

Or, in the experimental JVM implementation:

crucible_jvm_unsafe_assume_spec :
JavaClass -> String -> JVMSetup () -> TopLevel JVMMethodSpec

A Heap-Based Example
To tie all of the command descriptions from the previous sections together, consider the case of verifying the
correctness of a C program that computes the dot product of two vectors, where the length and value of each
vector are encapsulated together in a struct.

The dot product can be concisely specified in Cryptol as follows:

dotprod : {n, a} (fin n, fin a) => [n][a] -> [n][a] -> [a]
dotprod xs ys = sum (zip (*) xs ys)

To implement this in C, let’s first consider the type of vectors:

typedef struct {
uint32_t *elts;
uint32_t size;

} vec_t;

This struct contains a pointer to an array of 32-bit elements, and a 32-bit value indicating how many elements
that array has.

We can compute the dot product of two of these vectors with the following C code (which uses the size of the
shorter vector if they differ in size).

uint32_t dotprod_struct (vec_t *x, vec_t *y) {
uint32_t size = MIN(x->size , y->size);
uint32_t res = 0;
for( size_t i = 0; i < size; i++) {

res += x->elts[i] * y->elts[i];
}
return res;

}
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The entirety of this implementation can be found in the examples/llvm/dotprod_struct.c file in the
saw-script repository.

To verify this program in SAW, it will be convenient to define a couple of utility functions (which are generally
useful for many heap-manipulating programs). First, combining allocation and initialization to a specific
value can make many scripts more concise:

let alloc_init ty v = do {
p <- crucible_alloc ty;
crucible_points_to p v;
return p;

};

This creates a pointer p pointing to enough space to store type ty, and then indicates that the pointer points
to value v (which should be of that same type).

A common case for allocation and initialization together is when the initial value should be entirely symbolic.

let ptr_to_fresh n ty = do {
x <- crucible_fresh_var n ty;
p <- alloc_init ty ( crucible_term x);
return (x, p);

};

This function returns the pointer just allocated along with the fresh symbolic value it points to.

Given these two utility functions, the dotprod_struct function can be specified as follows:

let dotprod_spec n = do {
let nt = crucible_term {{ `n : [32] }};
(xs , xsp) <- ptr_to_fresh "xs" ( llvm_array n ( llvm_int 32));
(ys , ysp) <- ptr_to_fresh "ys" ( llvm_array n ( llvm_int 32));
let xval = crucible_struct [ xsp , nt ];
let yval = crucible_struct [ ysp , nt ];
xp <- alloc_init ( llvm_struct " struct .vec_t ") xval;
yp <- alloc_init ( llvm_struct " struct .vec_t ") yval;
crucible_execute_func [xp , yp];
crucible_return ( crucible_term {{ dotprod xs ys }});

};

Any instantiation of this specification is for a specific vector length n, and assumes that both input vectors
have that length. That length n automatically becomes a type variable in the subsequent Cryptol expressions,
and the backtick operator is used to reify that type as a bit vector of length 32.

The entire script can be found in the dotprod_struct-crucible.saw file alongside dotprod_struct.c.

Running this script results in the following:

Loading file " dotprod_struct .saw"
Proof succeeded ! dotprod_struct
Registering override for `dotprod_struct `

variant `dotprod_struct `
Symbolic simulation completed with side conditions .
Proof succeeded ! dotprod_wrap
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Using Ghost State
In some cases, information relevant to verification is not directly present in the concrete state of the program
being verified. This can happen for at least two reasons:

• When providing specifications for external functions, for which source code is not present. The external
code may read and write global state that is not directly accessible from the code being verified.

• When the abstract specification of the program naturally uses a different representation for some data
than the concrete implementation in the code being verified does.

One solution to these problems is the use of ghost state. This can be thought of as additional global state
that is visible only to the verifier. Ghost state with a given name can be declared at the top level with the
following function:

• crucible_declare_ghost_state : String -> TopLevel Ghost

Ghost state variables do not initially have any particluar type, and can store data of any type. Given an
existing ghost variable the following function can be used to specify its value:

• crucible_ghost_value : Ghost -> Term -> CrucibleSetup ()

Currently, this function can only be used for LLVM verification, though that will likely be generalized in
the future. It can be used in either the pre state or the post state, to specify the value of ghost state either
before or after the execution of the function, respectively.
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