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Abstract. The Software Analysis Workbench (SAW) is a system for
translating programs into logical expressions, transforming these expres-
sions, and using external reasoning tools (such as SAT and SMT solvers)
to prove properties about them. In the implementation of this transla-
tion, SAW combines efficient symbolic execution techniques in a novel
way. It has been used most extensively to prove that implementations of
cryptographic algorithms are functionally equivalent to reference speci-
fications, but can also be used to identify inputs to programs that will
lead to outputs with particular properties, and prove other properties
about programs. In this paper, we describe the structure of the SAW
system and present experimental results demonstrating the benefits of
its implementation techniques.
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1 Introduction

The Software Analysis Workbench (SAW) is a suite of tools for transforming
programs into formal models — logical representations of program semantics —
and for subsequent analysis of those models. Such models are appropriate for
mechanized reasoning about the functional behavior of programs. For example,
SAW can be used to answer questions such as the following, with a high degree
of automation:

– Is a tricky optimized program equivalent to a trusted reference specification?
– What is an input that will lead to a given location in a program?
– What inputs will yield outputs satisfying a given predicate?
– Did a refactoring cause any semantic change?
– What is an input for which program A, written in language L produces a

different output than program B, written in language M?

SAW supports generating models from several source languages, including
Java Virtual Machine (JVM) bytecode, Low-Level Virtual Machine (LLVM) bit-
code, and Cryptol (a domain-specific language designed for the description of



cryptographic algorithms [21]). As a result, SAW can generate models from C
and Java programs, along with other languages that target the JVM or LLVM.

The formal models are represented in a dependently-typed functional lan-
guage, SAWCore, that adopts the same general design as the internal represen-
tation used by proof assistants based on type theory.

The philosophy of SAW is to generate generic models of program seman-
tics, independent of a specific analysis task, and then act as a bridge between
programs and existing automated reasoning tools, allowing a wide range of trans-
formations along the way. The goal is to be able to perform mostly-automated
proofs about subtle code. SAW integrates existing tools with custom implemen-
tations of a number of known techniques, along with a variety of novel enhance-
ments to those techniques.

1.1 The Structure of SAW

Translation from programs to formal models in SAWCore takes one of several
forms. For programs that are originally written in functional style (such as Cryp-
tol programs), the process is essentially a straightforward compilation into SAW-
Core. For imperative programs, the current version of SAW depends primarily
on symbolic execution with path merging to generate functional terms. When
using symbolic execution, the resulting terms are “flat”; all iteration, whether
originating from loops or recursive functions, is fully unrolled. If full unrolling is
not possible, symbolic execution can simply fail to terminate.

Once programs have been translated to formal models, SAW supports trans-
forming, composing, and evaluating these models in a variety of ways. A built-in
rewriter can transform existing terms according to a chosen set of rewrite rules.

Transformation of formal models is generally used to prove properties about
programs. The SAW tools have been tuned to proving functional equivalence
between programs (and especially to the implementations of cryptographic algo-
rithms), though the tools are well-suited to proving any relationship between the
input and output of programs for which the model generation process succeeds.

The rewriting functionality built in to SAW can sometimes be used to com-
plete a proof on its own. For instance, when performing equivalence proofs be-
tween similar programs written in different languages, the SAWCore terms gener-
ated from those programs are often very similar and require only minor transfor-
mations to become identical. Terms in SAWCore are represented as hash-consed
Directed Acyclic Graphs (DAGs), so syntactically equivalent terms are immedi-
ately apparent, since they are guaranteed to be represented by the same node in
the graph of the term. For proofs that cannot be completed with rewriting alone,
SAW provides a connection to various automated and semi-automated external
tools, including Boolean Satisfiability (SAT) and Satisfiability Modulo Theories
(SMT) solvers, to offload proof tasks.

To improve the assurance of rewrite-based proofs, rewrite rules can be proven
correct themselves. A rewrite rule can be built from an equality type in the logic,
allowing a term of that type to serve as a witness to the validity of the rule. In



addition, SAT and SMT solvers can be used to prove the validity of rewrite rules.
In cases where assurance requirements are lower, SAW also allows unproven rules.

The translations between source languages, SAWCore, and external theorem
provers are illustrated in Fig. 1. The process of constructing models and or-
chestrating external theorem provers is controlled by a scripting language called
SAWScript. It is a straightforward typed functional language with a large collec-
tion of built-in functions dedicated to extracting formal models from programs,
manipulating those models, and interacting with external theorem provers.

In particular, SAW provides a novel combination of efficient symbolic execu-
tion techniques: a shared representation of symbolic program states; eager path
merging; deeply-integrated rewriting; and deep integration with efficient bit-level
provers based on an And-Inverter Graph (AIG) representation of boolean func-
tions. These features allow it to construct complete semantic models of programs
that include heavy use of bit-level operations. The key novelty of SAW is in this
combination of techniques, and the primary contributions of our work include:

– Experimental results demonstrating the benefits of DAG term representa-
tions, compositional symbolic execution, and the use of a wide variety of
back-end proof tools.

– Demonstration of symbolic execution for equivalence checking of crypto-
graphic algorithms across multiple languages.

– A tool made publicly available to the community.
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Fig. 1. Architecture of SAW. Source programs are translated to SAWCore, rewritten
according to user-defined rules, and sent to external theorem provers. The process is
controlled by programs in the SAWScript language.



2 SAWCore

The formal models generated by SAW are represented in an internal modeling
language called SAWCore. This language was designed to be an efficient, ex-
pressive representation for the semantics of programs originating in a variety
of source languages, including languages with sophisticated type systems (such
as Cryptol), general recursion (most languages), and complex memory models
(such as those appropriate for JVM, LLVM, and most machine languages).

SAWCore is a dependently typed functional language, similar to the core
calculi used by languages such as Coq [25], and Lean [22]. It supports user-
defined inductive data types, but also has built-in support for a variety of special
types such as Booleans, vectors (including extensive support for bit vectors),
tuples, and records, for efficient modeling of constructs from software, and for
compatibility with external tools that also have special support for these types.

Although SAWCore is intended primarily as an internal representation for
program semantics, it also has a concrete syntax with some conveniences to
simplify development of libraries of common operations and rewrite rules.

The ability to use high levels of abstraction in SAWCore makes models more
compact and easier to transform according to the properties of those abstrac-
tions. Ultimately, however, many of the program analyses performed by SAW can
largely be represented in first-order form (and the external provers we use gener-
ally operate on first-order formulas), so SAW includes back ends for translation
of a subset of SAWCore into first-order representations such as the And-Inverter
Graph External Representation (AIGER) and SMT-Lib formats. Broadly speak-
ing, the translatable subset consists of functions with domains and ranges that
are made entirely of finite bit vectors (potentially aggregated into higher-level
vectors, tuples, or records).

We are also considering adding the ability to export terms to Lean or Coq for
interactive proof. These will stay at a high level of abstraction and make use of
higher-order features, motivating a delay in lowering terms to first-order form.

3 Symbolic Execution

SAW makes heavy use of symbolic execution to translate imperative programs
to SAWCore. Unlike most implementations of symbolic execution, we ultimately
generate a single model of the symbolic state of a program, for all paths ex-
plored, rather than generating a separate symbolic state for each path. This has
the advantage of capturing the entire semantics of a program, which is useful for
functional correctness verification. However, it has the disadvantage of leading
to more complex symbolic states, making it potentially less effective as a bug-
finding tool for identifying potential assertion violations on specific paths. There-
fore, SAW tends to be effective for programs that can be exhaustively explored
by symbolic execution, but less scalable for programs that cannot. Our approach
is similar to that used by bounded model checkers in this respect, though the
bounds are all provided by the program rather than the model checker. Termina-
tion is determined by the satisfiability of loop conditions as each loop iteration



executes, so symbolic execution will fail to terminate if the underlying program
does not terminate, or if it has a sufficiently complex termination condition.

3.1 Shared Terms

The implementation of SAWCore uses a DAG structure to represent terms, and
uses memoization to guarantee that identical subterms are represented with a
single graph node. In addition, the SAW system uses a single term node database
for all terms generated within a session. Therefore, when comparing two similar
programs, semantically identical portions of those programs are immediately
identified (even when the original programs are written in different languages).
As detailed in Sec. 7.2, this representation is critical for symbolic execution of
most cryptographic code, to avoid exponential blow-up. For non-cryptographic
code without extensive iteration, the DAG representation is less critical, but still
helpful for reducing model sizes.

3.2 Postdominator-Based Merging

To support generating a single model of program semantics, rather than a model
of the symbolic state of each individual path, the symbolic execution infrastruc-
ture in SAW uses path merging at every node in the control-flow graph that
immediately post-dominates more than one other node. To facilitate path merg-
ing, we translate the original program into a modified representation which in-
cludes special symbolic execution instructions in place of the original branch
instructions. Each branch includes a merge point as well as an initial target, and
each path that executes starting from that branch instruction will pause when
it reaches the merge point. When all paths leading to a single merge target in-
struction have completed, the simulator merges their symbolic states. The result
is a single logical formula describing the final state of the program in terms of
its initial state (with free variables denoting arbitrary initial values).

3.3 Memory Models

One of the characteristics that tends to distinguish systems based on symbolic
execution from those based on, for instance, weakest preconditions or strongest
postconditions (the latter of which is roughly equivalent to symbolic execution),
is the use an implicit instead of an explicit memory model. In an implicit memory
model, the mapping between names and (potentially symbolic) values is tracked
directly by the symbolic execution system, perhaps as a map data structure in
the host language. Imperative updates, then, can be destructive updates to this
map instead of existentially-quantified equalities in the generated verification
conditions (as would be the case with strongest postconditions).

The ability to destructively update the internal simulator state can make
symbolic execution more efficient than strongest postcondition calculation for
typical imperative programs, and allows symbolic state expression to remain



quantifier-free. However, if imperative updates occur to symbolic addresses, the
size of verification conditions can explode with explicit case splitting expressions.
Therefore, the ability to trade off between implicit and explicit memory models
provides a flexibility advantage.

SAW currently has several implicit memory models, and does not implement
an explicit memory model. As future work, we are considering implementing
built-in data types in SAWCore that present similar functionality to the current
implicit memory models but in a way that would allow them to be directly
embedded into SAWCore terms, and therefore be used as part of an explicit
memory model. Such terms might be difficult for SMT solvers, but could allow
interactive provers to tackle more complex programs, rather than ruling out such
cases entirely.

3.4 Path Feasibility Checking

Like many symbolic execution systems, SAW supports (optional) path feasibility
checking. The process of executing a conditional branch instruction involves
adding the relevant branch condition to the accumulated path condition of each
path, and can include checking that condition for satisfiability.

For complex but satisfiable path conditions, full satisfiability checking can be
expensive, so SAW also supports another option: translating the path condition
term to AIG format and checking for syntactic equality with False. The trans-
lation to AIG form necessarily includes common simplifications such as constant
folding and beta reduction as well as simple representations of bit-level oper-
ations such as shifting and masking. In code that uses bit-level manipulation
heavily, this operation can frequently suffice to determine path feasibility. For
example, consider a program that iteratively performs a logical right shift on a
condition. For a bit vector of a fixed size, this operation will yield zero after a
fixed number of iterations, making the condition False (for a C or LLVM pro-
gram), and equivalence to False is often immediately apparent in AIG format.

3.5 Example

As a simple example of a task that SAW is ideally suited for, consider the
POSIX Find First Set (FFS) function, for finding the index of the first bit set
in a word. This function is implemented in many standard C library variants.
Some implementations iterate over the bits of the word, such as shown in the
left column of Fig. 2.

Other implementations avoid loops by masking off bits of the word in chunks,
such as shown in the right column of Fig. 2. These two functions compute the
same result using dramatically different techniques.

SAW can translate each of these programs to a formal model using symbolic
execution and prove the models equivalent with a SAT solver in a fraction of a
second (using the short script that appears in Sec. 5).



int ffs_ref (int w) {
int cnt , i = 0;
if (!w) { return 0; }
for(cnt = 0; cnt < 32; cnt ++) {

if (((1 << i++) & w) != 0) {
return i;

}
}
return 0;

}

int ffs_imp (int w) {
char n = 1;
if (!(w & 0 xffff )) {

n += 16; w >>= 16;
}
if (!(w & 0 x00ff )) {

n += 8; w >>= 8;
}
if (!(w & 0 x000f )) {

n += 4; w >>= 4;
}
if (!(w & 0 x0003 )) {

n += 2; w >>= 2;
}
return (w) ? (n+((w+1) & 0x01)) : 0;

}

Fig. 2. Reference and efficient implementations of the FFS algorithm which compute
the same result using different techniques.

4 Compositional Symbolic Execution

For functional languages, symbolic execution is naturally compositional. Sym-
bolic execution essentially amounts to a non-standard reduction strategy, and
any application expression with a name on the left-hand side can be either inlined
or treated as uninterpreted.

For imperative languages, the problem is trickier. We would like to treat
the target of a function call abstractly, referring to it with an uninterpreted
function symbol in our logic. It would also be convenient to provide only some
facts about that function, rather than a complete definition. However, doing
this automatically is tricky in an imperative setting with an implicit memory
model: although treating an imperative program as a pure function can often
be straightforward when its inputs and outputs are known, it can in general be
undecidable to determine those inputs and outputs automatically.

Therefore, our strategy to compositional verification is to allow users to pro-
vide descriptions of the inputs and outputs of a procedure in the imperative
language, and then describe the logical function that transforms those inputs
to outputs. This function can be an arbitrary expression, including, if desired,
uninterpreted function symbols.

Given such a description, we can do two things. We can symbolically execute
the procedure being described, given arbitrary contents of the inputs, to derive
a term denoting the symbolic values of the outputs. We can then (attempt to)
prove that this resulting term satisfies any property we desire.

Alternatively, we can use the same description of a procedure during the
symbolic execution of one of its callers. When the symbolic execution engine
encounters a function call, it can simply apply the provided expression to the
appropriate (symbolic) values of the state elements that form its inputs, and



store the resulting term in the portion of the simulator state corresponding to
its outputs. Thus, the symbolic execution engine can process procedure calls
without examining the callee, and may (as one option) simply use an uninter-
preted function to describe the semantics of the callee.

A more general approach is also possible: the semantics of a procedure can
be represented by a function that takes in all of that procedure’s arguments
plus the current heap and returns the procedure’s return value plus a new heap.
This allows automated composition, but trades off the efficiency possible with an
implicit representation of the heap. For programs that use linked data structures
or unbounded memory allocation, however, this approach would be effective in
cases where the current one is not. We plan to explore this approach more in
future work.

5 SAWScript

The process of model generation and transformation in SAW, and the interac-
tion with third-party proof tools, is coordinated by a scripting language called
SAWScript. The language is a simply-typed functional language, with an inter-
preter that can be used either in batch mode or through an interactive Read-
Evaluate-Print Loop (REPL).

Many of the built-in functions in SAWScript have externally-visible effects,
and these effectful commands are combined with a monad-like construct. Un-
like other languages with this approach to combining effectful computations,
SAWScript has no facility for user-defined monads, a decision we made to re-
duce cognitive load. To the SAWScript user, the types of effectful commands
simply restrict their use to specific contexts.

One central built-in type in SAWScript is Term, representing a SAWCore
term. Most built-in functions produce, modify, or consume Term values. From
the SAWScript point of view, Term is a single type, but each Term also has a
SAWCore type internally. Each Term is type-checked according to the SAWCore
type system as it is constructed, but the internal type of a Term can change
without the underlying SAWScript program changing if the structure of the
program under analysis changes.

SAWScript also has a tight connection with Cryptol, a language originally
developed for the high-level description of cryptographic algorithms, but which is
also very convenient for description of any algorithm that operates on fixed-size
bit vectors. Cryptol syntax provides a convenient way to construct SAWCore
terms that provides type inference and has less syntactic overhead than SAW-
Core. Existing SAWCore terms can be used in subsequent Cryptol expressions,
allowing Cryptol to be used as convenient “glue” around SAWCore terms ex-
tracted automatically from programs.

A variety of commands exist for extracting Term objects from imperative
programs. The simplest work only on a limited set of programs but are com-
pletely automatic, translating an imperative function to a lambda abstraction
with a type isomorphic to that of the original program. An alternative interface



allows more control over symbolic execution, allowing the user to place either
symbolic or concrete values into the program state, symbolically execute a func-
tion, and then read out components of the final state. The third interface allows
for compositional reasoning following the approach described in Sec. 4.

Given a Term, SAWScript provides commands to perform rewriting with a
given set of rules, unfold abstract named subterms, perform beta reduction, or
export it in various external formats. Proving the validity of Term values is
a central activity in SAW, and a ProofScript monad provides a mechanism
for chaining simple tactics together to complete a proof. The final tactic in
a ProofScript can be trivial to indicate that the preceding tactics should
have reduced the term to True, or a tactic that invokes an external prover on
the residual term. If a proof fails (or if a Term is satisfiable when using the
sat command), counter-examples are presented in terms of variables from the
original program.

Fig. 3 shows a short script that compares the FFS implementations from
Sec. 3.5 for equivalence. The llvm_extract command translates a simple LLVM
function into SAWCore, and the abc primitive is a ProofScript value that
instructs the system to perform the proof automatically using ABC. Expressions
between double curly braces are in Cryptol syntax and automatically translated
to SAWCore terms.

m <- llvm_load_module "ffs.bc ";
ref <- llvm_extract m " ffs_ref " llvm_pure ;
imp <- llvm_extract m " ffs_imp " llvm_pure ;
let thm = {{ \x -> ref x == imp x }};
time ( prove_print abc thm);

Fig. 3. SAWScript code to compare FFS implementations.

6 Implementation

The SAW implementation brings together a symbolic execution system for the
JVM; a similar system for LLVM; an implementation of the SAWCore language,
including a rewriting engine; an interpreter for the SAWScript language; and
an interpreter for the Cryptol language. All of these components are written in
Haskell, and total around 70k Lines of Code (LOC). In addition to this Haskell
code, SAW builds heavily on (and statically links with) the ABC system [5],
which consists of around 480k LOC in C. ABC is used in particular to represent
AIG data structures.

The current implementation can export SAWCore models to ABC, other
tools supporting the AIGER format, SAT solvers supporting the DIMACS Con-
junctive Normal Form (CNF) format, model checkers that use sequential AIG
models, and SMT solvers that use the SMT-Lib2 format (including invocation
support for ABC, Boolector, CVC4, MathSAT, Yices, and Z3).



The entire SAW system is publicly available under the 3-clause BSD license:

– An overview and tutorial: http://saw.galois.com
– Complete source code: http://github.com/GaloisInc/saw-script

6.1 Current Limitations

Because the development of SAW has been driven by the goal of automatically
proving properties about cryptographic algorithms, the scope of programs it can
effectively model is currently restricted in several ways.

Symbolic Termination. Because symbolic execution is the key technique in SAW
for translating imperative programs into formal models, we can successfully gen-
erate formal models only in cases where symbolic execution terminates. Symbolic
execution is guaranteed to terminate when control flow does not depend on sym-
bolic values (and when the program terminates for concrete values), but it may
fail to terminate in other cases.

Memory Layout. The formal models generated by SAW must currently work over
data composed of fixed-size bit vectors (potentially aggregated into larger data
structures). Because of this, programs that operate over linked data structures
such as lists or trees can only be analyzed for specific, fixed layouts.

Exceptions. Exceptions in both JVM and LLVM are largely unsupported. Code
under analysis can throw exceptions, as a way of indicating invalid paths, but
the symbolic execution engines do not track or invoke exception handlers.

Floating Point. The floating point instructions in JVM and LLVM are supported
only for concrete values.

7 Experiments

SAW provides a novel combination of symbolic execution techniques. Although
each has been at least proposed in prior work, the performance of each on con-
crete benchmarks is less well-understood. In this section, we describe how SAW
performs on several benchmarks that show the benefits of its design choices. In
all experiments, we set a time limit of 1500s, and indicate times longer than this
limit with “T/O”.

7.1 Experimental Subjects

We have focused on using SAW for proofs about cryptographic algorithms and
implementations, so the chosen benchmarks come from that domain.

http://saw.galois.com
http://github.com/GaloisInc/saw-script


FFS Two C implementations of the FFS algorithm (shown earlier), taken from
standard C library implementations, compared for equivalence. The imple-
mentations are each a single function, so the proof of equivalence uses a
monolithic strategy.

AES In-house implementations of the Advanced Encryption Standard (AES)
block cipher in C and Cryptol, compared for equivalence using a monolithic
proof strategy.

SHA-384 Three implementations of the SHA-384 hash function in C (from the
libgcrypt library), Java (from Bouncy Castle), and Cryptol, compared for
equivalence using both monolithic and compositional proof strategies. This
proof covers just the inner loop of the compression function.

ZUC Implementations of two versions of the ZUC stream cipher, in C (from
the official reference implementation) and Cryptol, compared for equivalence
using both monolithic and compositional proof strategies. Version 1.4 of the
algorithm had a bug related to non-injectivity of the key expansion function.
We show a proof of the injectivity of the key expansion routine in version 1.5,
and an example of non-injectivity in version 1.4 (by automatically producing
two inputs for which the key expansion function returns the same output).

ECDSA In-house implementations of the Elliptic Curve Digital Signature Al-
gorithm (ECDSA) over the NIST P-384 curve, written in Cryptol and Java,
compared for equivalence using a compositional strategy. We also compare
a subset of this implementation for equivalence using both a monolithic and
a compositional strategy.

All of the in-house implementations are in the examples directory of the
saw-script repository on GitHub cited in Sec. 6.

7.2 Shared Term Representation

Representing programs using shared (DAG) terms is one of the critical features
of SAW. Because symbolic execution unrolls loops, many similar or identical
subterms appear in the final program model. Table 1 shows how the shared and
unshared sizes of the verification conditions for the following proofs compare.
We also show the overall number of code lines, script lines, and total execution
time required for each proof. In some cases, such as the SHA-384 equivalence
proof, the improvement due to shared terms is simply a significant performance
benefit; in other cases, such as the ECDSA equivalence proof, it makes proofs
feasible that would otherwise be intractable.

Note that, although most of these benchmarks are equivalence proofs, two
are not. The ZUC 1.4 example finds a specific input for which the key expansion
function is not injective, and the ZUC 1.5 example shows that the improved key
expansion function has been made injective. Both of these cases work directly on
the C code without making use of a separate specification (other than a one-line
statement of the injectivity property of the key expansion function).



Term Size Lines
Benchmark Shared Unshared Code Script Proof Time
FFS equivalence 6.48 × 102 9.90 × 103 18 5 0.012s
ZUC equivalence 3.96 × 104 3.55 × 106 620 152 6.443s
ZUC 1.4 bug 1.83 × 104 1.27 × 107 263 79 1.692s
ZUC 1.5 injectivity 1.83 × 104 1.30 × 107 263 78 7.047s
AES equivalence 6.67 × 105 2.09 × 1038 1301 55 901.923s
SHA-384 equivalence 3.39 × 104 6.64 × 105 979 309 8.619s
ECDSA equivalence 3.03 × 105 2.76 × 10273 4305 1526 311.009s

Table 1. Shared and unshared term sizes, execution times, and script sizes for bench-
marks. Proof times are for our original proof scripts, each of which may use several
different provers.

7.3 Compositional Proofs

We show the effects of compositional reasoning on several examples on Table 2.
Compositional reasoning can split one large proof into several smaller proofs.
Because each proof must be processed separately, compositional reasoning can
make small equivalence proofs slower to complete (as in the SHA-384 exam-
ple). However, some proofs that are feasible monolithically are faster when done
compositionally (such as ZUC using Z3 and the ECDSA subset using ABC).
Most importantly, larger proofs tend to be intractable when done monolithically
(such as the ECDSA proof using Z3) but become tractable using compositional
reasoning. The full ECDSA proof mentioned in the previous section is composi-
tional. A monolithic attempt at the same proof runs out of memory before even
generating a theorem to prove, much less invoking a solver to discharge it.

Proof Time
Benchmark Prover Compositional Monolithic
ZUC equivalence ABC 13.873s 13.064s
ZUC equivalence Z3 4.445s 5.371s
SHA-384 equivalence ABC T/O T/O
SHA-384 equivalence Z3 25.219s 7.750s
ECDSA equivalence (subset) ABC 27.220s 105.284s
ECDSA equivalence (subset) Z3 75.385s T/O

Table 2. Execution time for compositional and monolithic equivalence checking. These
benchmarks use a single prover, rather than an optimized set, so the proof times differ
from those in Table 1.



7.4 Prover Comparison

We have included support for multiple provers within SAW because each tends
to be efficient on a different class of applications. In particular, the purely propo-
sitional ABC tends to be the most efficient for small cryptographic primitives
that primarily perform bit-level operations, whereas SMT solvers become more
efficient for larger programs in which compositional verification is necessary. Ta-
ble 3 shows the time taken by each of five provers on several benchmarks. For the
AES benchmark, we used the equivalence checking interface to ABC to compare
two distinct circuits. For all other benchmarks, we generated a single formula
for the property to be checked.

Benchmark ABC CVC4 Yices Z3 Picosat
FFS equivalence 0.013s 0.015s 0.018s 0.021s 0.035s
ZUC equivalence 14.451s T/O 4.196s 6.952s 11.311s
ZUC 1.4 bug 1.692s 3.073s 0.599s 1.991s 2.961s
ZUC 1.5 injectivity 7.047s T/O 2.051s 1.679s 4.629s
AES equivalence 901.923s T/O T/O T/O T/O
SHA-384 equivalence T/O T/O 56.368s 8.813s T/O
ECDSA equivalence (subset) 26.743s T/O 42.925s 74.591s 35.470s

Table 3. Relative prover efficiency. These are the same benchmarks as in Table 1, but
with a single prover instead of potentially several. All proofs are monolithic, since ABC
and Picosat do not support uninterpreted functions.

8 Related Work

Symbolic execution has been used since at least the 1970s as a technique for
software analysis [17]. Many systems have used symbolic execution to prove
properties about programs, detect bugs, and guide test generation. Of these,
the KLEE tool [7] for LLVM is a representative example, and one of the most
robust. Unlike SAW, KLEE focuses on checking specific properties of individual
execution paths rather than generating complete models of programs that can
be used for a variety of purposes. Others have investigated state merging in
symbolic execution [15,19], but have used it more to improve the efficiency of
path-based analysis based on symbolic execution, rather than for generation of
complete semantic models.

The approach taken by bounded model checkers, such as CBMC [10] and
LLBMC [13], is in some ways more similar to that of SAW. Bounded model
checkers also tend to construct models of program semantics that are complete
up to a certain bound. Model checkers frequently focus on temporal properties



of concurrent systems, at the expense of efficiency when reasoning about com-
plex, non-concurrent systems. SAW supports precise, efficient reasoning about
sequential code but does not support concurrency or temporal properties.

Contract-based software verification tools such as Frama-C [18], VCC [11],
the Java Modeling Language (JML) tools [6], and KeY [1] are very flexible
with respect to the sorts of properties they can prove. They typically require
significantly more manual effort than SAW for problems supported by both
approaches (in the form of manual annotations or user-assisted proofs), but can
handle a wider range of properties.

Unlike all of the verifiers mentioned so far, the goal of SAW is to construct
a full model of the underlying program, separate from any specific verification
task, and then perform any desired analysis on that model. However, some other
tools have taken a similar approach to SAW. The most similar is Axe [24],
which also aims at comparing cryptographic algorithms for equivalence. Axe uses
ACL2 instead of type theory as its internal logic, and is not publicly available.
Myreen et al. [23] and Hardin et al. [16] have both described decompilation
of low-level imperative languages into logic, using techniques similar to those of
SAW, though neither has a similar degree of integration. In the narrower domain
of equivalence checking, LLVM-MD [26] used somewhat similar techniques for
LLVM translation validation.

Both Why3 [14] and Boogie [20] have very similar goals to SAWCore. They
are aimed at modeling the semantics of various source languages and provid-
ing easy connection to existing theorem provers. However, both languages use
imperative constructs in the modeling language to encode the imperative con-
structs from the source language. Some standard program analysis techniques
(e. g., dataflow analysis) are easier to implement on an imperative language, but
verification must generally be annotation-based, and use, for instance, an ap-
proach like the weakest precondition calculus. Therefore, imperative modeling
languages are not well-suited to the rewrite-based philosophy that we embrace.
SAWCore tends to be well-suited to different classes of programs than Why3
or Boogie. Implementing a translator from either Why3 or Boogie to SAWCore
could allow for the best of both worlds.

In the specific application domain of cryptography, several proof tools exist.
One example is EasyCrypt [3], which allows high-level reasoning about cryp-
tographic algorithms in the abstract, but does not allow proofs about existing
concrete implementations.

In the realm of implementation verification, Appel recently proved the SHA-
256 code in OpenSSL [2] equivalent to a high-level specification using the Veri-
fied Software Toolchain (VST), which provides a strong reasoning path between
high-level cryptographic notions and concrete implementations written in C, de-
pending on only the relatively small trusted code base (TCB) of the Coq theorem
prover. The TCB of SAW is much larger. However, using VST to show equiv-
alence between the abstract definition of SHA-256 and the C implementation
required around 6,500 lines of manual proof, whereas equivalence proofs in SAW
tend to be mostly automated. Our hope is that, in the long run, it will be possi-



ble to achieve a better balance between TCB size and automation, realizing the
best of both worlds.

Relatedly, the miTLS project has created an implementation of Transport
Layer Security (TLS) verified to be equivalent to a high-level specification [4].
The proof concerns a custom implementation written in F* and the tools could
not be used to verify existing implementations in other languages.

The implementation of SAW described in this paper grew out of previous
work on verifying Cryptol programs [12] and is the second iteration of a system
briefly outlined in a previous extended abstract [8].

9 Conclusions and Future Work
We have shown that SAW can perform efficient equivalence checking and bug
finding on a variety of real-world examples written in several programming lan-
guages. It achieves this by combining a collection of known but not previously
integrated symbolic execution and program modeling techniques and connecting
to a wide range of state-of-the art theorem provers.

Currently, however, SAW is most applicable to a restricted class of programs:
those with finite, fixed input and output types that terminate under symbolic
execution. Our primary intended direction of future work is to relax the restric-
tions. To ease the restriction on termination under symbolic execution, we plan
to translate at least some iterative programs into explicit uses of fixpoint opera-
tions in the logic. This will allow us to generate models of more programs at the
expense of more difficult reasoning about the resulting models. To allow general
recursion in the context of our logic, while still allowing the logic to be used for
proofs, we are considering adopting the approach of Zombie [9].

To ease the restriction on finite, fixed input and output types, we plan to
extend SAW with the ability to generate formal models that include the heap
as an explicit parameter and result. In conjunction with explicit fixpoint opera-
tions, this change should allow SAW to generate models of essentially arbitrary
programs. It will, however, place a higher burden on the proof infrastructure
required to do analysis of those models. Inductive proofs and complex reasoning
about arrays will become much more important. Therefore, proofs about such
models may only be feasible with interactive or semi-interactive proof tools, and
we plan to explore emitting SAWCore models in the language of a proof assistant
such as Coq or Lean.
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